On Compact Sets with a Certain Affine Invariant
Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 34-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete characterization of finite-dimensional compact sets with the following property: all of their images under affine operators are symmetric (that is, have symmetry planes of certain dimensions). We also study the noncompact case; namely, we reveal a class of unbounded closed sets with this property and conjecture that this class is complete.
Keywords: compact set, symmetry, affine symmetry, convex body, ellipsoid, John ellipsoid
Mots-clés : Lebesgue measure, second-order hypersurface.
@article{MZM_2011_90_1_a3,
     author = {A. S. Voynov},
     title = {On {Compact} {Sets} with a {Certain} {Affine} {Invariant}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {34--39},
     publisher = {mathdoc},
     volume = {90},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a3/}
}
TY  - JOUR
AU  - A. S. Voynov
TI  - On Compact Sets with a Certain Affine Invariant
JO  - Matematičeskie zametki
PY  - 2011
SP  - 34
EP  - 39
VL  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a3/
LA  - ru
ID  - MZM_2011_90_1_a3
ER  - 
%0 Journal Article
%A A. S. Voynov
%T On Compact Sets with a Certain Affine Invariant
%J Matematičeskie zametki
%D 2011
%P 34-39
%V 90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a3/
%G ru
%F MZM_2011_90_1_a3
A. S. Voynov. On Compact Sets with a Certain Affine Invariant. Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 34-39. http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a3/

[1] L. Montejano, “Convex bodies with homothetic sections”, Bull. London Math. Soc., 23:4 (1991), 381–386 | DOI | MR | Zbl

[2] G. Shteingauz, Sto zadach, Mir, M., 1976

[3] G. R. Burton, “Congruent sections of a convex body”, Pacific J. Math., 81:2 (1979), 303–316 | MR | Zbl

[4] G. R. Burton, “Some characterisations of the ellipsoid”, Israel J. Math., 28:4 (1977), 339–349 | DOI | MR | Zbl

[5] F. John, “Extremum problems with inequalities as subsidiary conditions”, Studies and Essays Presented to R. Courant on his 60th Birthday, Interscience Publ., New York, 1948, 187–204 | MR | Zbl

[6] K. Chandrasekkharan, Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974 | MR | Zbl

[7] P. S. Aleksandrov, Kurs analiticheskoi geometrii i lineinoi algebry, Mir, M., 1979 | MR | Zbl