The Steinhaus Theorem on Equiconvergence for Functional-Differential Operators
Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 22-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the equiconvergence of the series $S(af)$ and $a(x)S(f)$, where $S(f)$ is the Fourier series in the eigenfunctions and associated functions of a certain functional-differential operator with involution.
Keywords: Steinhaus theorem, functional-differential operator, Fourier series, Dirac operator, Lipschitz condition.
Mots-clés : equiconvergence of series
@article{MZM_2011_90_1_a2,
     author = {M. Sh. Burlutskaya and A. P. Khromov},
     title = {The {Steinhaus} {Theorem} on {Equiconvergence} for {Functional-Differential} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {22--33},
     publisher = {mathdoc},
     volume = {90},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a2/}
}
TY  - JOUR
AU  - M. Sh. Burlutskaya
AU  - A. P. Khromov
TI  - The Steinhaus Theorem on Equiconvergence for Functional-Differential Operators
JO  - Matematičeskie zametki
PY  - 2011
SP  - 22
EP  - 33
VL  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a2/
LA  - ru
ID  - MZM_2011_90_1_a2
ER  - 
%0 Journal Article
%A M. Sh. Burlutskaya
%A A. P. Khromov
%T The Steinhaus Theorem on Equiconvergence for Functional-Differential Operators
%J Matematičeskie zametki
%D 2011
%P 22-33
%V 90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a2/
%G ru
%F MZM_2011_90_1_a2
M. Sh. Burlutskaya; A. P. Khromov. The Steinhaus Theorem on Equiconvergence for Functional-Differential Operators. Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 22-33. http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a2/

[1] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[2] M. Sh. Burlutskaya, V. P. Kurdyumov, A. S. Lukonina, A. P. Khromov, “Funktsionalno-differentsialnyi operator s involyutsiei”, Dokl. RAN, 414:4 (2007), 443–446 | MR | Zbl

[3] M. Sh. Burlutskaya, A. P. Khromov, “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam funktsionalno-differentsialnogo operatora pervogo poryadka na grafe iz dvukh reber, soderzhaschem tsikl”, Differents. uravneniya, 43:12 (2007), 1597–1605 | MR | Zbl

[4] V. V. Kornev, A. P. Khromov, “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s yadrami, dopuskayuschimi razryvy proizvodnykh na diagonalyakh”, Matem. sb., 192:10 (2001), 33–50 | MR | Zbl

[5] A. P. Khromov, “Integralnye operatory s yadrami, razryvnymi na lomanykh liniyakh”, Matem. sb., 197:11 (2006), 115–142 | MR | Zbl