Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_90_1_a2, author = {M. Sh. Burlutskaya and A. P. Khromov}, title = {The {Steinhaus} {Theorem} on {Equiconvergence} for {Functional-Differential} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {22--33}, publisher = {mathdoc}, volume = {90}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a2/} }
TY - JOUR AU - M. Sh. Burlutskaya AU - A. P. Khromov TI - The Steinhaus Theorem on Equiconvergence for Functional-Differential Operators JO - Matematičeskie zametki PY - 2011 SP - 22 EP - 33 VL - 90 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a2/ LA - ru ID - MZM_2011_90_1_a2 ER -
M. Sh. Burlutskaya; A. P. Khromov. The Steinhaus Theorem on Equiconvergence for Functional-Differential Operators. Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 22-33. http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a2/
[1] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[2] M. Sh. Burlutskaya, V. P. Kurdyumov, A. S. Lukonina, A. P. Khromov, “Funktsionalno-differentsialnyi operator s involyutsiei”, Dokl. RAN, 414:4 (2007), 443–446 | MR | Zbl
[3] M. Sh. Burlutskaya, A. P. Khromov, “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam funktsionalno-differentsialnogo operatora pervogo poryadka na grafe iz dvukh reber, soderzhaschem tsikl”, Differents. uravneniya, 43:12 (2007), 1597–1605 | MR | Zbl
[4] V. V. Kornev, A. P. Khromov, “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s yadrami, dopuskayuschimi razryvy proizvodnykh na diagonalyakh”, Matem. sb., 192:10 (2001), 33–50 | MR | Zbl
[5] A. P. Khromov, “Integralnye operatory s yadrami, razryvnymi na lomanykh liniyakh”, Matem. sb., 197:11 (2006), 115–142 | MR | Zbl