The Steinhaus Theorem on Equiconvergence for Functional-Differential Operators
Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 22-33
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish the equiconvergence of the series $S(af)$ and $a(x)S(f)$, where $S(f)$ is the Fourier series in the eigenfunctions and associated functions of a certain functional-differential operator with involution.
Keywords:
Steinhaus theorem, functional-differential operator, Fourier series, Dirac operator, Lipschitz condition.
Mots-clés : equiconvergence of series
Mots-clés : equiconvergence of series
@article{MZM_2011_90_1_a2,
author = {M. Sh. Burlutskaya and A. P. Khromov},
title = {The {Steinhaus} {Theorem} on {Equiconvergence} for {Functional-Differential} {Operators}},
journal = {Matemati\v{c}eskie zametki},
pages = {22--33},
publisher = {mathdoc},
volume = {90},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a2/}
}
TY - JOUR AU - M. Sh. Burlutskaya AU - A. P. Khromov TI - The Steinhaus Theorem on Equiconvergence for Functional-Differential Operators JO - Matematičeskie zametki PY - 2011 SP - 22 EP - 33 VL - 90 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a2/ LA - ru ID - MZM_2011_90_1_a2 ER -
M. Sh. Burlutskaya; A. P. Khromov. The Steinhaus Theorem on Equiconvergence for Functional-Differential Operators. Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 22-33. http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a2/