Positive Definite Functions and Spectral Properties of the Schr\"odinger Operator with Point Interactions
Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 151-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Schrödinger operator with point interactions, radial positive definite function, self-adjoint operator, deficiency index, Weyl function, Green's formula.
@article{MZM_2011_90_1_a13,
     author = {N. I. Goloschapova and V. P. Zastavnyi and M. M. Malamud},
     title = {Positive {Definite} {Functions} and {Spectral} {Properties} of the {Schr\"odinger} {Operator} with {Point} {Interactions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {151--156},
     publisher = {mathdoc},
     volume = {90},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a13/}
}
TY  - JOUR
AU  - N. I. Goloschapova
AU  - V. P. Zastavnyi
AU  - M. M. Malamud
TI  - Positive Definite Functions and Spectral Properties of the Schr\"odinger Operator with Point Interactions
JO  - Matematičeskie zametki
PY  - 2011
SP  - 151
EP  - 156
VL  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a13/
LA  - ru
ID  - MZM_2011_90_1_a13
ER  - 
%0 Journal Article
%A N. I. Goloschapova
%A V. P. Zastavnyi
%A M. M. Malamud
%T Positive Definite Functions and Spectral Properties of the Schr\"odinger Operator with Point Interactions
%J Matematičeskie zametki
%D 2011
%P 151-156
%V 90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a13/
%G ru
%F MZM_2011_90_1_a13
N. I. Goloschapova; V. P. Zastavnyi; M. M. Malamud. Positive Definite Functions and Spectral Properties of the Schr\"odinger Operator with Point Interactions. Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 151-156. http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a13/

[1] F. A. Berezin, L. D. Faddeev, Dokl. AN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[2] S. Albeverio, F. Gestezi, R. Kheeg-kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR | Zbl

[3] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 | MR | Zbl

[4] G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, Interdiscip. Math. Sci., 6, World Sci. Publ., Hackensack, NJ, 2007 | MR | Zbl

[5] V. P. Zastavnyi, Dokl. RAN, 325:5 (1992), 901–903 | MR | Zbl

[6] V. I. Gorbachuk, M. L. Gorbachuk, Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | MR | Zbl

[7] V. A. Derkach, M. M. Malamud, J. Funct. Anal., 95:1 (1991), 1–95 | DOI | MR | Zbl

[8] M. M. Malamud, H. Neidhardt, J. Funct. Anal., 260:3 (2011), 613–638 | DOI | MR | Zbl

[9] F. Olver, Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978 | MR | Zbl

[10] Yu. Arlinskii, E. Tsekanovskii, Integral Equations Operator Theory, 51:3 (2005), 319–356 | DOI | MR | Zbl