Necessary and Sufficient Conditions for the Existence and $\varepsilon$-Uniqueness of Bounded Solutions of the Equation $x'=f(x)-h(t)$
Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 137-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of $\varepsilon$-unique bounded solution to the nonlinear differential equation $x'=f(x)-h(t)$, where $f\colon\mathbb R\to\mathbb R$ is a continuous function and $h(t)$ is an arbitrary continuous function bounded on $\mathbb R$. We derive necessary and sufficient conditions for the existence and $\varepsilon$-uniqueness of bounded solutions to this equation.
Keywords: nonlinear differential equation, bounded solution, $\varepsilon$-uniqueness, Banach space.
@article{MZM_2011_90_1_a11,
     author = {V. E. Slyusarchuk},
     title = {Necessary and {Sufficient} {Conditions} for the {Existence} and $\varepsilon${-Uniqueness} of {Bounded} {Solutions} of the {Equation} $x'=f(x)-h(t)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {137--142},
     publisher = {mathdoc},
     volume = {90},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a11/}
}
TY  - JOUR
AU  - V. E. Slyusarchuk
TI  - Necessary and Sufficient Conditions for the Existence and $\varepsilon$-Uniqueness of Bounded Solutions of the Equation $x'=f(x)-h(t)$
JO  - Matematičeskie zametki
PY  - 2011
SP  - 137
EP  - 142
VL  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a11/
LA  - ru
ID  - MZM_2011_90_1_a11
ER  - 
%0 Journal Article
%A V. E. Slyusarchuk
%T Necessary and Sufficient Conditions for the Existence and $\varepsilon$-Uniqueness of Bounded Solutions of the Equation $x'=f(x)-h(t)$
%J Matematičeskie zametki
%D 2011
%P 137-142
%V 90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a11/
%G ru
%F MZM_2011_90_1_a11
V. E. Slyusarchuk. Necessary and Sufficient Conditions for the Existence and $\varepsilon$-Uniqueness of Bounded Solutions of the Equation $x'=f(x)-h(t)$. Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 137-142. http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a11/

[1] V. E. Slyusarchuk, “Usloviya suschestvovaniya ogranichennykh reshenii nelineinykh differentsialnykh uravnenii”, UMN, 54:4 (1999), 181–182 | MR | Zbl

[2] V. E. Slyusarchuk, “Neobkhodimye i dostatochnye usloviya suschestvovaniya i edinstvennosti ogranichennykh reshenii nelineinykh differentsialnykh uravnenii”, Neliniini kolivannya, 2:4 (1999), 523–539 | MR

[3] V. E. Slyusarchuk, “Necessary and sufficient conditions for existence and uniqueness of bounded and almost-periodic solutions of nonlinear differential equations”, Acta Appl. Math., 65:1-3 (2001), 333–341 | DOI | MR | Zbl

[4] V. Yu. Slyusarchuk, “Neobkhidni i dostatni umovi lipshitsevoï oborotnosti neliniinogo diferentsialnogo operatora $d/dt-f$ v prostori obmezhenikh na osi funktsii”, Matematichni studiï, 15:1 (2001), 77–86 | MR | Zbl

[5] V. E. Slyusarchuk, “Neobkhodimye i dostatochnye usloviya obratimosti nelineinogo differentsialnogo operatora $d/dt+f$ v prostranstve suschestvenno ogranichennykh na osi veschestvennykh funktsii”, Diferentsialni rivnyannya i neliniini kolivannya, Pratsi Ukraïnskogo matematichnogo kongresu – 2001. Sektsiya 3, In-t. matem. NAN Ukraïni, Kiïv, 2002, 138–151 | MR | Zbl

[6] V. E. Slyusarchuk, “Neobkhodimye i dostatochnye usloviya lipshitsevoi obratimosti nelineinogo differentsialnogo otobrazheniya $d/dt-f$ v prostranstvakh $L_p({\mathbb R},{\mathbb R})$, $1\le p\le\infty$”, Matem. zametki, 73:6 (2003), 891–903 | MR | Zbl

[7] N. N. Bogolyubov, Yu. A. Mitropolskii, A. M. Samoilenko, Metod uskorennoi skhodimosti v nelineinoi mekhanike, Naukova dumka, Kiev, 1969 | MR | Zbl

[8] R. Reissig, G. Sansone, R. Konti, Kachestvennaya teoriya nelineinykh differentsialnykh uravnenii, Nauka, M., 1974 | MR | Zbl

[9] E. F. Mischenko, N. Kh. Rozov, Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR | Zbl

[10] V. A. Pliss, Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1977 | MR | Zbl

[11] Yu. V. Trubnikov, A. I. Perov, Differentsialnye uravneniya s monotonnymi nelineinostyami, Nauka i tekhnika, Minsk, 1986 | MR | Zbl

[12] A. I. Perov, “Ob ogranichennykh resheniyakh nelineinykh sistem obyknovennykh differentsialnykh uravnenii”, Vestn. VGU. Cer. fiz., matem., 2003, no. 1, 165–168

[13] V. E. Slyusarchuk, “Neliniini diferentsialni rivnyannya z obmezhenimi na $\mathbb R$ rozvyazkami”, Neliniini kolivannya, 11:1 (2008), 96–111 | MR

[14] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya: V 3-kh t., v. 1, Nauka, M., 1966 | MR | Zbl

[15] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | MR | Zbl

[16] L. Nirenberg, Lektsii po nelineinomu funktsionalnomu analizu, Matematika. Novoe v zarubezhnoi nauke, 5, Mir, M., 1977 | MR | Zbl