Some New Results on Sums of Primes
Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 11-21
Cet article a éte moissonné depuis la source Math-Net.Ru
We study sums of primes by means of a generalization of Euler's prime number theorem and use the values of the Riemann zeta function for the approximation. We also give the truncation error of these approximations.
Keywords:
number theory, prime sums, elliptic theta functions, Riemann zeta function, Euler's prime number theorem.
Mots-clés : Euler-totient constant, Möbius function, Möbius inversion theorem
Mots-clés : Euler-totient constant, Möbius function, Möbius inversion theorem
@article{MZM_2011_90_1_a1,
author = {N. Bagis},
title = {Some {New} {Results} on {Sums} of {Primes}},
journal = {Matemati\v{c}eskie zametki},
pages = {11--21},
year = {2011},
volume = {90},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a1/}
}
N. Bagis. Some New Results on Sums of Primes. Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 11-21. http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a1/
[1] T. M. Apostol, Introduction to Analytic Number Theory, Undergrad. Texts in Math., Springer-Verlag, New York, 1976 | MR | Zbl
[2] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer Verlang, New York, 1991 | MR | Zbl
[3] T. W. Körner, Fourier Analysis, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl
[4] G. E. Andrews, Number Theory, Dover Publ., New York, 1994 | MR | Zbl
[5] B. C. Berndt, Ramanujan's Notebooks, Part I, Springer-Verlag, New York, 1985 | MR | Zbl