Some New Results on Sums of Primes
Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 11-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We study sums of primes by means of a generalization of Euler's prime number theorem and use the values of the Riemann zeta function for the approximation. We also give the truncation error of these approximations.
Keywords: number theory, prime sums, elliptic theta functions, Möbius function, Möbius inversion theorem, Riemann zeta function, Euler's prime number theorem.
Mots-clés : Euler-totient constant
@article{MZM_2011_90_1_a1,
     author = {N. Bagis},
     title = {Some {New} {Results} on {Sums} of {Primes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {11--21},
     publisher = {mathdoc},
     volume = {90},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a1/}
}
TY  - JOUR
AU  - N. Bagis
TI  - Some New Results on Sums of Primes
JO  - Matematičeskie zametki
PY  - 2011
SP  - 11
EP  - 21
VL  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a1/
LA  - ru
ID  - MZM_2011_90_1_a1
ER  - 
%0 Journal Article
%A N. Bagis
%T Some New Results on Sums of Primes
%J Matematičeskie zametki
%D 2011
%P 11-21
%V 90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a1/
%G ru
%F MZM_2011_90_1_a1
N. Bagis. Some New Results on Sums of Primes. Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 11-21. http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a1/