Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_90_1_a0, author = {D. V. Artamonov}, title = {The {Number} of {Additional} {Singular} {Points} in the {Riemann--Hilbert} {Problem} on a {Riemann} {Surface}}, journal = {Matemati\v{c}eskie zametki}, pages = {3--10}, publisher = {mathdoc}, volume = {90}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a0/} }
TY - JOUR AU - D. V. Artamonov TI - The Number of Additional Singular Points in the Riemann--Hilbert Problem on a Riemann Surface JO - Matematičeskie zametki PY - 2011 SP - 3 EP - 10 VL - 90 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a0/ LA - ru ID - MZM_2011_90_1_a0 ER -
D. V. Artamonov. The Number of Additional Singular Points in the Riemann--Hilbert Problem on a Riemann Surface. Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a0/
[1] A.A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009
[2] M. Ohtsuki, “On the number of apparent singularities of a linear differential equation”, Tokyo J. Math., 5:1 (1982), 23–29 | MR | Zbl
[3] A. A. Bolibrukh, “Problema Rimana–Gilberta na kompaktnoi rimanovoi poverkhnosti”, Monodromiya v zadachakh algebraicheskoi geometrii i differentsialnykh uravnenii, Sbornik statei, Tr. MIAN, 238, Nauka, M., 2002, 55–69 | MR | Zbl
[4] M. Yoshida, “On the number of apparent singularities of the Riemann–Hilbert problem on Riemann surface”, J. Math. Soc. Japan, 49:1 (1997), 145–159 | DOI | MR | Zbl
[5] O. Forster, Lectures on Riemann Surfaces, Grad. Texts in Math., 81, Springer-Verlag, New York, 1991 | MR | Zbl
[6] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya nad rimanovymi poverkhnostyami i uravnenie Kadomtseva–Petviashvili (KP). I”, Funkts. analiz i ego pril., 12:4 (1978), 41–52 | MR | Zbl
[7] A. N. Tyurin, “Klassifikatsiya vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 29:3 (1965), 657–688 | MR | Zbl