The Number of Additional Singular Points in the Riemann--Hilbert Problem on a Riemann Surface
Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an upper bound for the number of additional singular points that are sufficient to construct a system of linear equations with given regular singular points and a given monodromy on a Riemann surface.
Keywords: Riemann surface, Riemann–Hilbert problem, regular singular point, apparent singular points, fundamental group.
Mots-clés : monodromy
@article{MZM_2011_90_1_a0,
     author = {D. V. Artamonov},
     title = {The {Number} of {Additional} {Singular} {Points} in the {Riemann--Hilbert} {Problem} on a {Riemann} {Surface}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {90},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a0/}
}
TY  - JOUR
AU  - D. V. Artamonov
TI  - The Number of Additional Singular Points in the Riemann--Hilbert Problem on a Riemann Surface
JO  - Matematičeskie zametki
PY  - 2011
SP  - 3
EP  - 10
VL  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a0/
LA  - ru
ID  - MZM_2011_90_1_a0
ER  - 
%0 Journal Article
%A D. V. Artamonov
%T The Number of Additional Singular Points in the Riemann--Hilbert Problem on a Riemann Surface
%J Matematičeskie zametki
%D 2011
%P 3-10
%V 90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a0/
%G ru
%F MZM_2011_90_1_a0
D. V. Artamonov. The Number of Additional Singular Points in the Riemann--Hilbert Problem on a Riemann Surface. Matematičeskie zametki, Tome 90 (2011) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/MZM_2011_90_1_a0/

[1] A.A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009

[2] M. Ohtsuki, “On the number of apparent singularities of a linear differential equation”, Tokyo J. Math., 5:1 (1982), 23–29 | MR | Zbl

[3] A. A. Bolibrukh, “Problema Rimana–Gilberta na kompaktnoi rimanovoi poverkhnosti”, Monodromiya v zadachakh algebraicheskoi geometrii i differentsialnykh uravnenii, Sbornik statei, Tr. MIAN, 238, Nauka, M., 2002, 55–69 | MR | Zbl

[4] M. Yoshida, “On the number of apparent singularities of the Riemann–Hilbert problem on Riemann surface”, J. Math. Soc. Japan, 49:1 (1997), 145–159 | DOI | MR | Zbl

[5] O. Forster, Lectures on Riemann Surfaces, Grad. Texts in Math., 81, Springer-Verlag, New York, 1991 | MR | Zbl

[6] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya nad rimanovymi poverkhnostyami i uravnenie Kadomtseva–Petviashvili (KP). I”, Funkts. analiz i ego pril., 12:4 (1978), 41–52 | MR | Zbl

[7] A. N. Tyurin, “Klassifikatsiya vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 29:3 (1965), 657–688 | MR | Zbl