Bases of Exponentials in Weighted Spaces Generated by Zeros of Functions of Sine Type
Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 894-913.

Voir la notice de l'article provenant de la source Math-Net.Ru

If $\omega$ is an $A_p$-weight with some additional condition and $(\lambda)$ is a separated sequence of all zeros of a sine-type function possessing a certain multiplier (in the sense of Fourier transforms) property, then the corresponding system of exponentials $(e^{i\lambda_nt})$ constitutes a basis in the weighted space $L^p((-\pi,\pi),\omega(t)\,dt)$, $1\pi\infty$.
Keywords: basis of exponentials, weighted space, sine-type function, $A_p$-weight, Riesz property, weighted multiplier, Hölder's inequality.
Mots-clés : Fourier multiplier, Laplace transformation
@article{MZM_2011_89_6_a9,
     author = {A. M. Sedletskii},
     title = {Bases of {Exponentials} in {Weighted} {Spaces} {Generated} by {Zeros} of {Functions} of {Sine} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {894--913},
     publisher = {mathdoc},
     volume = {89},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a9/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Bases of Exponentials in Weighted Spaces Generated by Zeros of Functions of Sine Type
JO  - Matematičeskie zametki
PY  - 2011
SP  - 894
EP  - 913
VL  - 89
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a9/
LA  - ru
ID  - MZM_2011_89_6_a9
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Bases of Exponentials in Weighted Spaces Generated by Zeros of Functions of Sine Type
%J Matematičeskie zametki
%D 2011
%P 894-913
%V 89
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a9/
%G ru
%F MZM_2011_89_6_a9
A. M. Sedletskii. Bases of Exponentials in Weighted Spaces Generated by Zeros of Functions of Sine Type. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 894-913. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a9/

[1] B. Ya. Levin, “O bazisakh pokazatelnykh funktsii v $L^2$”, Zap. matem. otd. fiz.-mat. fak-ta KhGU i KhMO. Ser. 4, 27 (1961), 39–48

[2] B. Ya. Levin, “Interpolyatsiya tselymi funktsiyami eksponentsialnogo tipa”, Matematicheskaya fizika i funktsionalnyi analiz, 1, FTINT AN USSR, Kharkov, 1969, 136–146 | MR

[3] V. D. Golovin, “O biortogonalnykh razlozheniyakh v $L^2$ po lineinym kombinatsiyam pokazatelnykh funktsii”, Zap. matem. otd. fiz.-mat. fak-ta KhGU i KhMO. Ser. 4, 30 (1964), 18–29 | MR

[4] A. M. Sedletskii, “Biortogonalnye razlozheniya funktsii v ryady eksponent na intervalakh veschestvennoi osi”, UMN, 37:5 (1982), 51–95 | MR | Zbl

[5] K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963 | MR | Zbl

[6] A. M. Sedletskii, “Bazisy, vstrechayuschiesya pri reshenii uravnenii smeshannogo tipa”, Differents. uravneniya, 35:4 (1999), 507–515 | MR | Zbl

[7] E. M. Dynkin, B. P. Osilenker, “Vesovye otsenki singulyarnykh integralov i ikh prilozheniya”, Itogi nauki i tekhn. Ser. Mat. anal., 21, VINITI, M., 1983, 42–129 | MR | Zbl

[8] R. Hunt, B. Muckenhoupt, R. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl

[9] R. A. Hunt, W.-S. Young, “A weighted norm inequality for Fourier series”, Bull. Amer. Math. Soc., 80 (1974), 274–277 | DOI | MR | Zbl

[10] K. I. Babenko, “O sopryazhennykh funktsiyakh”, Dokl. AN SSSR, 62:2 (1948), 157–160 | MR | Zbl

[11] E. I. Moiseev, “O bazisnosti sistem sinusov i kosinusov v vesovom prostranstve”, Differents. uravneniya, 34:1 (1998), 40–44 | MR | Zbl

[12] A. M. Sedletskii, Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005

[13] D. S. Kurtz, R. L. Wheeden, “Results on weighted norm inequalities for multipliers”, Trans. Amer. Math. Soc., 255 (1979), 343–362 | DOI | MR | Zbl

[14] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR | Zbl

[15] S. S. Pukhov, A. M. Sedletskii, “Bazisy iz eksponent, sinusov i kosinusov v vesovykh prostranstvakh na konechnom intervale”, Dokl. RAN, 425:4 (2009), 452–455 | MR | Zbl

[16] I. P. Natanson, Konstruktivnaya teoriya funktsii, Gostekhizdat, M.–L., 1949 | MR | Zbl

[17] N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ., 26, Amer. Math. Soc., New York, 1940 | MR | Zbl

[18] E. Yanke, F. Emde, F. Lesh, Spetsialnye funktsii. Formuly, grafiki, tablitsy, Nauka, M., 1977 | MR | Zbl