Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_89_6_a8, author = {I. M. Nabiev}, title = {Solution of the {Inverse} {Quasiperiodic} {Problem} for the {Dirac} {System}}, journal = {Matemati\v{c}eskie zametki}, pages = {885--893}, publisher = {mathdoc}, volume = {89}, number = {6}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a8/} }
I. M. Nabiev. Solution of the Inverse Quasiperiodic Problem for the Dirac System. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 885-893. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a8/
[1] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl
[2] M. G. Gasymov, T. T. Dzhabiev, “Peshenie obratnoi zadachi po dvum spektram dlya uravneniya Diraka na konechnom otrezke”, Dokl. AN AzSSR, 22:7 (1966), 3–6 | MR | Zbl
[3] B. A. Watson, “Inverse spectral problems for weighted Dirac systems”, Inverse Problems, 15:3 (1999), 793–805 | DOI | MR | Zbl
[4] M. Kiss, “An $n$-dimensional Ambarzumian type theorem for Dirac opeators”, Inverse Problems, 20:5 (2004), 1593–1597 | DOI | MR | Zbl
[5] S. Albeverio, R. Hryniv, Ya. Mykytyuk, “Inverse spectral problems for Dirac operators with summable potentials”, Russ. J. Math. Phys., 12:4 (2005), 406–423 | MR | Zbl
[6] T. V. Misyura, “Kharakteristika spektrov periodicheskoi i antiperiodicheskoi kraevykh zadach, porozhdaemykh operatsiei Diraka. II”, Teor. funkts., funkts. analiz i ikh prilozh., 31 (1979), 102–109 | MR | Zbl
[7] I. M. Nabiev, “Solution of a class of inverse problems for the Dirac operator”, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 21:1, Math. Mech. (2001), 146–157 | MR | Zbl
[8] I. M. Nabiev, “Characteristic of spectral data of Dirac operators”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 24:7, Math. Mech. (2004), 161–166 | MR | Zbl
[9] V. A. Marchenko, I. V. Ostrovskii, “Kharakteristika spektra operatora Khilla”, Matem. sb., 97:4 (1975), 540–606 | MR | Zbl
[10] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl
[11] P. Kargaev, E. Korotyaev, “The inverse problem for the Hill operator, a direct approach”, Invent. Math., 129:3 (1997), 567–593 | DOI | MR | Zbl
[12] E. Korotyaev, “Marchenko–Ostrovki mapping for periodic Zakharov–Shabat systems”, J. Differential Equations, 175:2 (2001), 244–274 | DOI | MR | Zbl
[13] E. Korotyaev, “Inverse problem and estimates for periodic Zakharov–Shabat systems”, J. Reine Angew. Math., 583 (2005), 87–115 | DOI | MR | Zbl
[14] E. L. Korotyaev, “Obratnye zadachi dlya operatorov Khilla i Diraka”, Dokl. RAN, 365:6 (1999), 730–733 | MR | Zbl
[15] I. M. Nabiev, “Obratnaya kvaziperiodicheskaya zadacha dlya operatora diffuzii”, Dokl. RAN, 415:2 (2007), 168–170 | MR | Zbl
[16] Funktsionalnyi analiz, eds. S. G. Krein, Nauka, M., 1972 | MR | Zbl
[17] I. M. Nabiev, “Kratnost i vzaimnoe raspolozhenie sobstvennykh znachenii kvadratichnogo puchka operatorov Shturma–Liuvillya”, Matem. zametki, 67:3 (2000), 369–381 | MR | Zbl
[18] B. Ya. Levin, Tselye funktsii, Kurs lektsii, Izd-vo Mosk. un-ta, M., 1971
[19] R. M. Young, An Introduction to Nonharmonic Fourier Series, Pure Appl. Math., 93, Academic Press, New York, 1980 | MR | Zbl
[20] I. M. Guseinov, I. M. Nabiev, “Obratnaya spektralnaya zadacha dlya puchkov differentsialnykh operatorov”, Matem. sb., 198:11 (2007), 47–66 | MR | Zbl