Solution of the Inverse Quasiperiodic Problem for the Dirac System
Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 885-893.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a complete solution of the inverse problem of spectral analysis for the Dirac operator with quasiperiodic boundary conditions. We prove a uniqueness theorem for the solution of the inverse problem and obtain necessary and sufficient conditions for a sequence of real numbers to be the spectrum of a quasiperiodic Dirac problem.
Keywords: inverse spectral problem, Dirac operator, quasiperiodic Dirac problem, Lyapunov function, boundary-value problem, spectral data, Bernstein's inequality.
@article{MZM_2011_89_6_a8,
     author = {I. M. Nabiev},
     title = {Solution of the {Inverse} {Quasiperiodic} {Problem} for the {Dirac} {System}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {885--893},
     publisher = {mathdoc},
     volume = {89},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a8/}
}
TY  - JOUR
AU  - I. M. Nabiev
TI  - Solution of the Inverse Quasiperiodic Problem for the Dirac System
JO  - Matematičeskie zametki
PY  - 2011
SP  - 885
EP  - 893
VL  - 89
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a8/
LA  - ru
ID  - MZM_2011_89_6_a8
ER  - 
%0 Journal Article
%A I. M. Nabiev
%T Solution of the Inverse Quasiperiodic Problem for the Dirac System
%J Matematičeskie zametki
%D 2011
%P 885-893
%V 89
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a8/
%G ru
%F MZM_2011_89_6_a8
I. M. Nabiev. Solution of the Inverse Quasiperiodic Problem for the Dirac System. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 885-893. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a8/

[1] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl

[2] M. G. Gasymov, T. T. Dzhabiev, “Peshenie obratnoi zadachi po dvum spektram dlya uravneniya Diraka na konechnom otrezke”, Dokl. AN AzSSR, 22:7 (1966), 3–6 | MR | Zbl

[3] B. A. Watson, “Inverse spectral problems for weighted Dirac systems”, Inverse Problems, 15:3 (1999), 793–805 | DOI | MR | Zbl

[4] M. Kiss, “An $n$-dimensional Ambarzumian type theorem for Dirac opeators”, Inverse Problems, 20:5 (2004), 1593–1597 | DOI | MR | Zbl

[5] S. Albeverio, R. Hryniv, Ya. Mykytyuk, “Inverse spectral problems for Dirac operators with summable potentials”, Russ. J. Math. Phys., 12:4 (2005), 406–423 | MR | Zbl

[6] T. V. Misyura, “Kharakteristika spektrov periodicheskoi i antiperiodicheskoi kraevykh zadach, porozhdaemykh operatsiei Diraka. II”, Teor. funkts., funkts. analiz i ikh prilozh., 31 (1979), 102–109 | MR | Zbl

[7] I. M. Nabiev, “Solution of a class of inverse problems for the Dirac operator”, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 21:1, Math. Mech. (2001), 146–157 | MR | Zbl

[8] I. M. Nabiev, “Characteristic of spectral data of Dirac operators”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 24:7, Math. Mech. (2004), 161–166 | MR | Zbl

[9] V. A. Marchenko, I. V. Ostrovskii, “Kharakteristika spektra operatora Khilla”, Matem. sb., 97:4 (1975), 540–606 | MR | Zbl

[10] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl

[11] P. Kargaev, E. Korotyaev, “The inverse problem for the Hill operator, a direct approach”, Invent. Math., 129:3 (1997), 567–593 | DOI | MR | Zbl

[12] E. Korotyaev, “Marchenko–Ostrovki mapping for periodic Zakharov–Shabat systems”, J. Differential Equations, 175:2 (2001), 244–274 | DOI | MR | Zbl

[13] E. Korotyaev, “Inverse problem and estimates for periodic Zakharov–Shabat systems”, J. Reine Angew. Math., 583 (2005), 87–115 | DOI | MR | Zbl

[14] E. L. Korotyaev, “Obratnye zadachi dlya operatorov Khilla i Diraka”, Dokl. RAN, 365:6 (1999), 730–733 | MR | Zbl

[15] I. M. Nabiev, “Obratnaya kvaziperiodicheskaya zadacha dlya operatora diffuzii”, Dokl. RAN, 415:2 (2007), 168–170 | MR | Zbl

[16] Funktsionalnyi analiz, eds. S. G. Krein, Nauka, M., 1972 | MR | Zbl

[17] I. M. Nabiev, “Kratnost i vzaimnoe raspolozhenie sobstvennykh znachenii kvadratichnogo puchka operatorov Shturma–Liuvillya”, Matem. zametki, 67:3 (2000), 369–381 | MR | Zbl

[18] B. Ya. Levin, Tselye funktsii, Kurs lektsii, Izd-vo Mosk. un-ta, M., 1971

[19] R. M. Young, An Introduction to Nonharmonic Fourier Series, Pure Appl. Math., 93, Academic Press, New York, 1980 | MR | Zbl

[20] I. M. Guseinov, I. M. Nabiev, “Obratnaya spektralnaya zadacha dlya puchkov differentsialnykh operatorov”, Matem. sb., 198:11 (2007), 47–66 | MR | Zbl