Real $GM$-Biquadrics
Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 868-878.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider real algebraic varieties that are the intersection of two real quadrics. For brevity, we refer to such varieties as real biquadrics. The rigid isotopy classes of real biquadrics have been described long ago. In the present paper, we find the rigid isotopy classes in which the biquadrics are $GM$-varieties.
Keywords: rigid isotopy class, real biquadric, $GM$-variety, cohomology group, complex projective algebraic variety, Grassmann variety, spectral sequence.
@article{MZM_2011_89_6_a6,
     author = {V. A. Krasnov},
     title = {Real $GM${-Biquadrics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {868--878},
     publisher = {mathdoc},
     volume = {89},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a6/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Real $GM$-Biquadrics
JO  - Matematičeskie zametki
PY  - 2011
SP  - 868
EP  - 878
VL  - 89
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a6/
LA  - ru
ID  - MZM_2011_89_6_a6
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Real $GM$-Biquadrics
%J Matematičeskie zametki
%D 2011
%P 868-878
%V 89
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a6/
%G ru
%F MZM_2011_89_6_a6
V. A. Krasnov. Real $GM$-Biquadrics. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 868-878. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a6/

[1] V. A. Rokhlin, “Kompleksnye topologicheskie kharakteristiki veschestvennykh algebraicheskikh krivykh”, UMN, 33:5 (1978), 77–89 | MR | Zbl

[2] A. Degtyarev, I. Itenberg, V. Kharlamov, Real Enriques Surfaces, Lecture Notes in Math., 1746, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[3] V. A. Krasnov, “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR | Zbl

[4] V. A. Krasnov, “Veschestvennye trekhmernye bikvadriki”, Izv. RAN. Ser. matem., 74:4 (2010), 119–144

[5] A. A. Agrachev, R. V. Gamkrelidze, “Kvadratichnye otobrazheniya i gladkie vektor- funktsii: eilerovy kharakteristiki mnozhestv urovnya”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 35, VINITI, M., 1989, 179–239 | MR | Zbl

[6] A. A. Agrachev, “Gomologii peresechenii veschestvennykh kvadrik”, Dokl. AN SSSR, 299:5 (1988), 1033–1036 | MR | Zbl

[7] A. Degtyarev, I. Itenberg, V. Kharlamov, On the Number of Components of a Complete Intersection of Real Quadrics, arXiv: math.AG/0806.4077

[8] V. A. Krasnov, “Veschestvennye algebraicheskie GM-mnogoobraziya”, Izv. RAN. Ser. matem., 62:3 (1998), 39–66 | MR | Zbl

[9] M. Reid, The Complete Intersection of Two or More Quadrics, Ph.D. Thesis, Cambridge, 1972