Well-Posed Problems for the Laplace Operator in a Punctured Disk
Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 856-867
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a complete description of well-posed solvable boundary-value problems for the Laplace operator in the disk and in the punctured disk. We present formulas for resolvents of well-posed problems for the Laplace operator in the disk.
Keywords:
Laplace operator, well-posed solvable boundary-value problem, punctured disk, nonhomogeneous Laplace equation, Dirichlet boundary condition, Green function, Dirac function.
@article{MZM_2011_89_6_a5,
author = {B. E. Kanguzhin and A. A. Anijarov},
title = {Well-Posed {Problems} for the {Laplace} {Operator} in a {Punctured} {Disk}},
journal = {Matemati\v{c}eskie zametki},
pages = {856--867},
publisher = {mathdoc},
volume = {89},
number = {6},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a5/}
}
B. E. Kanguzhin; A. A. Anijarov. Well-Posed Problems for the Laplace Operator in a Punctured Disk. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 856-867. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a5/