Differential Operators Symmetric with Respect to an Indefinite Metric
Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 846-855.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe classes of second-order differential operators on a circle that are symmetric with respect to an indefinite metric with a finite rank of indefiniteness.
Keywords: differential operator, complex Hilbert space, $J$-symmetric operator, indefinite metric, periodic function, Pontryagin space, Krein space.
@article{MZM_2011_89_6_a4,
     author = {R. S. Ismagilov and Sh. Sh. Sultanov},
     title = {Differential {Operators} {Symmetric} with {Respect} to an {Indefinite} {Metric}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {846--855},
     publisher = {mathdoc},
     volume = {89},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a4/}
}
TY  - JOUR
AU  - R. S. Ismagilov
AU  - Sh. Sh. Sultanov
TI  - Differential Operators Symmetric with Respect to an Indefinite Metric
JO  - Matematičeskie zametki
PY  - 2011
SP  - 846
EP  - 855
VL  - 89
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a4/
LA  - ru
ID  - MZM_2011_89_6_a4
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%A Sh. Sh. Sultanov
%T Differential Operators Symmetric with Respect to an Indefinite Metric
%J Matematičeskie zametki
%D 2011
%P 846-855
%V 89
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a4/
%G ru
%F MZM_2011_89_6_a4
R. S. Ismagilov; Sh. Sh. Sultanov. Differential Operators Symmetric with Respect to an Indefinite Metric. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 846-855. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a4/

[1] L. S. Pontryagin, “Ermitovy operatory v prostranstve s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. matem., 8:6 (1944), 243–280 | MR | Zbl

[2] T. Ya. Azizov, I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR | Zbl

[3] I. E. Egorov, S. G. Pyatkov, S. V. Popov, Neklassicheskie differentsialno-operatornye uravneniya, Nauka, Novosibirsk, 2000 | MR | Zbl

[4] R. Beals, “Indefinite Sturm–Liouville problems and half-range completeness”, J. Differential Equations, 56:3 (1985), 391–407 | DOI | MR | Zbl

[5] B. Ćurgus, H. Langer, “A Krein space approach to symmetric ordinary differential operators with an indefinite weight function”, J. Differential Equations, 79:1 (1989), 31–61 | DOI | MR | Zbl

[6] B. Ćurgus, B. Najman, “A Krein space approach to elliptic eigenvalue problems with indefinite weights”, Differential Integral Equations, 7:5-6 (1994), 1241–1252 | MR | Zbl

[7] Sh. Sh. Sultanov, “O tenzornykh proizvedeniyakh predstavlenii gruppy $SL(2,\mathbb{R})$”, Funkts. analiz i ego pril., 10:2 (1976), 90–92 | MR | Zbl

[8] Sh. Sh. Sultanov, “Razlozhenie tenzornykh proizvedenii dvukh neprivodimykh unitarnykh v $\Pi_{\infty}$-metrike predstavlenii gruppy $SL(2,R)$”, Sib. matem. zhurn., 29:1 (1988), 179–191 | MR | Zbl

[9] R. S. Ismagilov, Sh. Sh. Sultanov, “O spektralnom analize nekotorykh differentsialnykh operatorov, samosopryazhennykh v prostranstve s indefinitnoi metrikoi”, Matem. zametki, 70:4 (2001), 568–580 | MR | Zbl

[10] N. N. Lebedev, Spetsialnye funktsii i ikh prilozheniya, GITTL, M., 1953 | MR | Zbl

[11] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii, 5, Fizmatiz, M., 1962 | MR | Zbl