Keywords: 2-surface negative intrinsic curvature, pseudospherical surface, pseudospherical congruence, Gaussian curvature, Bäcklund transformation.
@article{MZM_2011_89_6_a3,
author = {V. A. Gorkavyy and E. N. Nevmerzhitskaja},
title = {An {Analog} of {Bianchi} {Transformations} for {Two-Dimensional} {Surfaces} in the {Space} $S^3\times \mathbb{R}^1$},
journal = {Matemati\v{c}eskie zametki},
pages = {833--845},
year = {2011},
volume = {89},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a3/}
}
TY - JOUR
AU - V. A. Gorkavyy
AU - E. N. Nevmerzhitskaja
TI - An Analog of Bianchi Transformations for Two-Dimensional Surfaces in the Space $S^3\times \mathbb{R}^1$
JO - Matematičeskie zametki
PY - 2011
SP - 833
EP - 845
VL - 89
IS - 6
UR - http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a3/
LA - ru
ID - MZM_2011_89_6_a3
ER -
%0 Journal Article
%A V. A. Gorkavyy
%A E. N. Nevmerzhitskaja
%T An Analog of Bianchi Transformations for Two-Dimensional Surfaces in the Space $S^3\times \mathbb{R}^1$
%J Matematičeskie zametki
%D 2011
%P 833-845
%V 89
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a3/
%G ru
%F MZM_2011_89_6_a3
V. A. Gorkavyy; E. N. Nevmerzhitskaja. An Analog of Bianchi Transformations for Two-Dimensional Surfaces in the Space $S^3\times \mathbb{R}^1$. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 833-845. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a3/
[1] Yu. A. Aminov, Geometriya podmnogoobrazii, Naukova dumka, K., 2002 | Zbl
[2] K. Tenenblat, Transformations of Manifolds and Applications to Differential Equations, Pitman Monogr. Surveys Pure Appl. Math., 93, Longman, Harlow, 1998 | MR | Zbl
[3] L. A. Masaltsev, “Psevdosfericheskaya kongruentsiya Bianki v $E^{2n-1}$”, Matem. fizika, analiz, geometriya, 1:3-4 (1994), 505–512 | MR | Zbl
[4] K. Tenenblat, C.-L. Terng, “Bäcklund's theorem for $n$-dimensional submanifolds of $\mathbb{R}^{2n-1}$”, Ann. of Math. (2), 111:3 (1980), 477–490 | DOI | MR | Zbl
[5] Yu. Aminov, A. Sym, “On Bianchi and Bäcklund transformations of two-dimensional surfaces in $E^4$”, Math. Phys. Anal. Geom., 3:1 (2000), 75–89 | DOI | MR | Zbl
[6] V. A. Gorkavyi, “Kongruentsii Byanki dvumernykh poverkhnostei v $E^4$”, Matem. sb., 196:10 (2005), 79–102 | MR | Zbl
[7] V. Gorkavyy, “On pseudospherical congruencies in $E^4$”, Matem. fizika, analiz, geometriya, 10:4 (2003), 498–504 | MR | Zbl
[8] V. A. Gorkavyi, “O psevdosfericheskikh kongruentsiyakh v prostranstvakh postoyannoi krivizny”, Dop. Nats. akad. nauk Ukraïni, 6 (2008), 13–18 | MR