An Analog of Bianchi Transformations for Two-Dimensional Surfaces in the Space $S^3\times \mathbb{R}^1$
Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 833-845.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bianchi-type transformations are constructed for two-dimensional surfaces with constant negative intrinsic curvature in the space $S^3\times \mathbb{R}^1$.
Mots-clés : Bianchi transformation
Keywords: 2-surface negative intrinsic curvature, pseudospherical surface, pseudospherical congruence, Gaussian curvature, Bäcklund transformation.
@article{MZM_2011_89_6_a3,
     author = {V. A. Gorkavyy and E. N. Nevmerzhitskaja},
     title = {An {Analog} of {Bianchi} {Transformations} for {Two-Dimensional} {Surfaces} in the {Space} $S^3\times \mathbb{R}^1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {833--845},
     publisher = {mathdoc},
     volume = {89},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a3/}
}
TY  - JOUR
AU  - V. A. Gorkavyy
AU  - E. N. Nevmerzhitskaja
TI  - An Analog of Bianchi Transformations for Two-Dimensional Surfaces in the Space $S^3\times \mathbb{R}^1$
JO  - Matematičeskie zametki
PY  - 2011
SP  - 833
EP  - 845
VL  - 89
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a3/
LA  - ru
ID  - MZM_2011_89_6_a3
ER  - 
%0 Journal Article
%A V. A. Gorkavyy
%A E. N. Nevmerzhitskaja
%T An Analog of Bianchi Transformations for Two-Dimensional Surfaces in the Space $S^3\times \mathbb{R}^1$
%J Matematičeskie zametki
%D 2011
%P 833-845
%V 89
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a3/
%G ru
%F MZM_2011_89_6_a3
V. A. Gorkavyy; E. N. Nevmerzhitskaja. An Analog of Bianchi Transformations for Two-Dimensional Surfaces in the Space $S^3\times \mathbb{R}^1$. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 833-845. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a3/

[1] Yu. A. Aminov, Geometriya podmnogoobrazii, Naukova dumka, K., 2002 | Zbl

[2] K. Tenenblat, Transformations of Manifolds and Applications to Differential Equations, Pitman Monogr. Surveys Pure Appl. Math., 93, Longman, Harlow, 1998 | MR | Zbl

[3] L. A. Masaltsev, “Psevdosfericheskaya kongruentsiya Bianki v $E^{2n-1}$”, Matem. fizika, analiz, geometriya, 1:3-4 (1994), 505–512 | MR | Zbl

[4] K. Tenenblat, C.-L. Terng, “Bäcklund's theorem for $n$-dimensional submanifolds of $\mathbb{R}^{2n-1}$”, Ann. of Math. (2), 111:3 (1980), 477–490 | DOI | MR | Zbl

[5] Yu. Aminov, A. Sym, “On Bianchi and Bäcklund transformations of two-dimensional surfaces in $E^4$”, Math. Phys. Anal. Geom., 3:1 (2000), 75–89 | DOI | MR | Zbl

[6] V. A. Gorkavyi, “Kongruentsii Byanki dvumernykh poverkhnostei v $E^4$”, Matem. sb., 196:10 (2005), 79–102 | MR | Zbl

[7] V. Gorkavyy, “On pseudospherical congruencies in $E^4$”, Matem. fizika, analiz, geometriya, 10:4 (2003), 498–504 | MR | Zbl

[8] V. A. Gorkavyi, “O psevdosfericheskikh kongruentsiyakh v prostranstvakh postoyannoi krivizny”, Dop. Nats. akad. nauk Ukraïni, 6 (2008), 13–18 | MR