Small Transverse Vibrations of Visco-Elastic Rods
Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 825-832.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the spectral problem related to the description of small transverse vibrations of homogeneous visco-elastic rods. The left end of the rod is hinged at the joint. The right end is attached to a concentrated mass. The spectrum of this problem is described and asymptotic formulas for eigenvalues are obtained.
Keywords: visco-elastic rod, Sobolev space, spectral problem, operator pencil, self-adjoint operator, analytic function.
Mots-clés : transverse vibration
@article{MZM_2011_89_6_a2,
     author = {I. V. Gorokhova},
     title = {Small {Transverse} {Vibrations} of {Visco-Elastic} {Rods}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {825--832},
     publisher = {mathdoc},
     volume = {89},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a2/}
}
TY  - JOUR
AU  - I. V. Gorokhova
TI  - Small Transverse Vibrations of Visco-Elastic Rods
JO  - Matematičeskie zametki
PY  - 2011
SP  - 825
EP  - 832
VL  - 89
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a2/
LA  - ru
ID  - MZM_2011_89_6_a2
ER  - 
%0 Journal Article
%A I. V. Gorokhova
%T Small Transverse Vibrations of Visco-Elastic Rods
%J Matematičeskie zametki
%D 2011
%P 825-832
%V 89
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a2/
%G ru
%F MZM_2011_89_6_a2
I. V. Gorokhova. Small Transverse Vibrations of Visco-Elastic Rods. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 825-832. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a2/

[1] V. V. Bolotin, Nekonservativnye zadachi teorii uprugoi ustoichivosti, Fizmatgiz, M., 1961 | MR | Zbl

[2] Zh. Ben Amara, A. A. Vladimirov, “Ob odnoi zadache chetvertogo poryadka so spektralnym i fizicheskim parametrami v granichnom uslovii”, Izv. RAN. Ser. matem., 68:4 (2004), 3–18 | MR | Zbl

[3] M. Möller, V. Pivovarchik, “Spectral properties of a fourth order differential equation”, Z. Anal. Anwend., 25:3 (2006), 341–366 | MR | Zbl

[4] I. P. Andreichikov, V. I. Yudovich, “Ob ustoichivosti vyazko-uprugikh sterzhnei”, Izv. AN SSSR. Ser. MTT, 1974, no. 2, 78–87

[5] M. P. Païdoussis, N. T. Issid, “Dynamic stability of pipes conveying fluid”, J. Sound Vibration, 33:3 (1974), 267–294 | DOI

[6] V. N. Zefirov, V. V. Kolesov, A. I. Miloslavskii, “Issledovanie sobstvennykh chastot pryamolineinogo truboprovoda”, Izv. AN SSSR. Ser. MTT, 1985, no. 1, 179–188

[7] R. O. Griniv, A. A. Shkalikov, “O puchke operatorov, voznikayuschem v zadache o kolebaniyakh sterzhnya s vnutrennim treniem”, Matem. zametki, 56:2 (1994), 114–131 | MR | Zbl

[8] V. N. Pivovarchik, “Kraevaya zadacha, svyazannaya s kolebaniyami sterzhnya s vnutrennim i vneshnim treniem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1987, no. 3, 68–71 | MR | Zbl

[9] A. A. Vladimirov, “O nakoplenii sobstvennykh znachenii operatornogo puchka, svyazannogo s zadachei o kolebaniyakh vyazkouprugogo sterzhnya”, Matem. zametki, 79:3 (2006), 369–383 | MR | Zbl

[10] A. S. Markus, Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR | Zbl

[11] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[12] V. Pivovarchik, “On positive spectra of one class of polynomial operator pencils”, Integral Equations Operator Theory, 19:3 (1994), 314–326 | DOI | MR | Zbl