Deformations of Poisson Structures by Closed $3$-Forms
Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 944-947.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : Poisson structure
Keywords: deformation, closed form, loop space, pre-symplectic structure, symplectic manifold, skew-symmetric operator.
@article{MZM_2011_89_6_a13,
     author = {O. I. Mokhov},
     title = {Deformations of {Poisson} {Structures} by {Closed} $3${-Forms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {944--947},
     publisher = {mathdoc},
     volume = {89},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a13/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Deformations of Poisson Structures by Closed $3$-Forms
JO  - Matematičeskie zametki
PY  - 2011
SP  - 944
EP  - 947
VL  - 89
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a13/
LA  - ru
ID  - MZM_2011_89_6_a13
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Deformations of Poisson Structures by Closed $3$-Forms
%J Matematičeskie zametki
%D 2011
%P 944-947
%V 89
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a13/
%G ru
%F MZM_2011_89_6_a13
O. I. Mokhov. Deformations of Poisson Structures by Closed $3$-Forms. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 944-947. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a13/

[1] O. Mokhov, Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 121–151 | MR | Zbl

[2] O. Mokhov, Geometry from the Pacific Rim, de Gruyter, Berlin, 1997, 285–309 | MR | Zbl

[3] O. I. Mokhov, Prostranstva petel i gruppy diffeomorfizmov, Sbornik statei, Tr. MIAN, 217, Nauka, M., 1997, 100–134 | MR | Zbl

[4] O. I. Mokhov, UMN, 53:3 (1998), 85–192 | MR | Zbl

[5] O. I. Mokhov, Simplekticheskaya i puassonova geometriya na prostranstvakh petel gladkikh mnogoobrazii i integriruemye uravneniya, Sovremennaya matematika, IKI, M.–Izhevsk, 2004 | MR

[6] O. I. Mokhov, Funkts. analiz i ego pril., 24:3 (1990), 86–87 | MR | Zbl

[7] O. I. Mokhov, Funkts. analiz i ego pril., 25:2 (1991), 65–67 | MR | Zbl

[8] A. M. Astashov, Dokl. AN SSSR, 270:5 (1983), 1033–1037 | MR | Zbl

[9] A. M. Vinogradov, Dokl. AN SSSR, 241:1 (1978), 18–21 | MR | Zbl

[10] A. M. Astashov, A. M. Vinogradov, J. Geom. Phys., 3:2 (1986), 263–287 | DOI | MR | Zbl

[11] B. Dubrovin, Y. Zhang, Normal Forms of Hierarchies of Integrable PDEs, Frobenius Manifolds and Gromov–Witten Invariants, 2001, arXiv: math.DG/0108160

[12] B. Dubrovin, S.-Q. Liu, Y. Zhang, Comm. Pure Appl. Math., 59:4 (2006), 559–615 ; (2004), arXiv: math.DG/0410027 | DOI | MR | Zbl