Newton Diagrams, Odd Points, and the Index of Singular Points of Planar Vector Fields
Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 803-807.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of a formula for calculating the topological index of a singular point of a planar vector field from the Newton diagrams of the field components, conditions on the integer points of the Newton diagram under which the index vanishes or is odd are determined.
Keywords: topological index of a singular point, analytic vector field, $\mathbb R$-nondegenerate vector field, Newton diagram, suitable Newton diagram
Mots-clés : Cauchy index.
@article{MZM_2011_89_6_a0,
     author = {I. V. Antjushina and N. M. Bliznyakov},
     title = {Newton {Diagrams,} {Odd} {Points,} and the {Index} of {Singular} {Points} of {Planar} {Vector} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--807},
     publisher = {mathdoc},
     volume = {89},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a0/}
}
TY  - JOUR
AU  - I. V. Antjushina
AU  - N. M. Bliznyakov
TI  - Newton Diagrams, Odd Points, and the Index of Singular Points of Planar Vector Fields
JO  - Matematičeskie zametki
PY  - 2011
SP  - 803
EP  - 807
VL  - 89
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a0/
LA  - ru
ID  - MZM_2011_89_6_a0
ER  - 
%0 Journal Article
%A I. V. Antjushina
%A N. M. Bliznyakov
%T Newton Diagrams, Odd Points, and the Index of Singular Points of Planar Vector Fields
%J Matematičeskie zametki
%D 2011
%P 803-807
%V 89
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a0/
%G ru
%F MZM_2011_89_6_a0
I. V. Antjushina; N. M. Bliznyakov. Newton Diagrams, Odd Points, and the Index of Singular Points of Planar Vector Fields. Matematičeskie zametki, Tome 89 (2011) no. 6, pp. 803-807. http://geodesic.mathdoc.fr/item/MZM_2011_89_6_a0/

[1] M. A. Krasnoselskii, P. P. Zabreiko, Geometricheskie metody nelineinogo analiza, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1975 | MR | Zbl

[2] M. A. Krasnoselskii, A. I. Perov, A. I. Povolotskii, P. P. Zabreiko, Vektornye polya na ploskosti, Fizmatgiz, M., 1963 | MR | Zbl

[3] N. M. Bliznyakov, “Otsenki topologicheskikh indeksov”, Geometriya i teoriya osobennostei v nelineinykh uravneniyakh, Novoe v globalnom analize, Izd-vo Voronezhsk. un-ta, Voronezh, 1987, 9–23 ; N. M. Bliznyakov, “Topological index estimates”, Global Analysis – Studies and Applications III, Lecture Notes in Math., 1334, Springer-Verlag, Berlin, 1988, 180–198 | Zbl | DOI | MR

[4] H. M. Bliznyakov, “K zadache vychisleniya indeksa osoboi tochki vektornogo polya v $\mathbb R^n$”, Sovmestnye zasedaniya seminara imeni I. G. Petrovskogo i Moskovskogo matematicheskogo obschestva, UMN, 38:5 (1983), 143

[5] N. M. Bliznyakov, “Indeksy Koshi i indeks osoboi tochki vektornogo polya”, Primenenie topologii v sovremennom analize, Novoe v globalnom analize, Izd-vo Voronezhsk. un-ta, Voronezh, 1987, 3–21 ; N. M. Bliznyakov, “Cauchy indices and the index of a singular point of a vector field”, Global Analysis – Studies and Applications II, Lecture Notes in Math., 1214, Springer-Verlag, Berlin, 1986, 1–20 | MR | Zbl | DOI | MR | Zbl

[6] G. N. Khimshiashvili, “O lokalnoi stepeni gladkogo otobrazheniya”, Soobsch. AN GruzSSR, 85:2 (1977), 309–312 | MR | Zbl

[7] A. I. Esterov, “Indeks veschestvennoi osoboi tochki i ee diagramma Nyutona”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2003, no. 1, 8–12 | MR | Zbl

[8] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl