Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_89_5_a9, author = {R. A. Mekhtiev}, title = {Invariants of the {Homoclinic} {Trajectories} of a {Two-Dimensional} {Diffeomorphism}}, journal = {Matemati\v{c}eskie zametki}, pages = {755--770}, publisher = {mathdoc}, volume = {89}, number = {5}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a9/} }
R. A. Mekhtiev. Invariants of the Homoclinic Trajectories of a Two-Dimensional Diffeomorphism. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 755-770. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a9/
[1] Ya. G. Sinai, Sovremennye problemy ergodicheskoi teorii, Sovremennye problemy matematiki, Fizmatlit, M., 1995 | Zbl
[2] D. Treschev, “Closures of asymptotic curves in a two-dimensional symplectic map”, J. Dynam. Control Systems, 4:3 (1998), 305–314 | DOI | MR | Zbl
[3] V. Rom-Kedar, S. Wiggins, “Transport in two-dimensional maps”, Arch. Rational Mech. Anal., 109:3 (1990), 239–298 | DOI | MR | Zbl
[4] R. W. Easton, “Trellises formed by stable and unstable manifolds in the plane”, Trans. Amer. Math. Soc., 294:2 (1986), 719–732 | DOI | MR | Zbl
[5] A. Yu. Tyurkina, Nekotorye invarianty gomoklinicheskikh tochek analiticheskogo simplekticheskogo otobrazheniya dvumernoi oblasti na sebya, Dimplomnaya rabota, MGU, M., 2004
[6] Zh. Palis, V. Di Melu, Geometricheskaya teoriya dinamicheskikh sistem: Vvedenie, Sovremennaya matematika. Vvodnye kursy, Mir, M., 1986 | MR | Zbl
[7] D. V. Treschev, Vvedenie v teoriyu vozmuschenii gamiltonovykh sistem, Biblioteka studenta-matematika, 6, Fazis, M., 1998 | MR
[8] F. Takens, “Homoclinic points in conservative systems”, Invent. Math., 18:3-4 (1972), 267–292 | DOI | MR | Zbl