Invariants of the Homoclinic Trajectories of a Two-Dimensional Diffeomorphism
Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 755-770.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider homoclinic trajectories under the mapping of a two-dimensional manifold onto itself, define various invariants of homoclinic trajectories, and establish relations between them. We estimate the number of homoclinic trajectories whose distinct invariants possess values within prescribed limits.
Keywords: two-dimensional diffeomorphism, homoclinic trajectory, two-dimensional manifold, hyperbolic fixed point, separatrix
Mots-clés : monodromy matrix, homoclinic point.
@article{MZM_2011_89_5_a9,
     author = {R. A. Mekhtiev},
     title = {Invariants of the {Homoclinic} {Trajectories} of a {Two-Dimensional} {Diffeomorphism}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {755--770},
     publisher = {mathdoc},
     volume = {89},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a9/}
}
TY  - JOUR
AU  - R. A. Mekhtiev
TI  - Invariants of the Homoclinic Trajectories of a Two-Dimensional Diffeomorphism
JO  - Matematičeskie zametki
PY  - 2011
SP  - 755
EP  - 770
VL  - 89
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a9/
LA  - ru
ID  - MZM_2011_89_5_a9
ER  - 
%0 Journal Article
%A R. A. Mekhtiev
%T Invariants of the Homoclinic Trajectories of a Two-Dimensional Diffeomorphism
%J Matematičeskie zametki
%D 2011
%P 755-770
%V 89
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a9/
%G ru
%F MZM_2011_89_5_a9
R. A. Mekhtiev. Invariants of the Homoclinic Trajectories of a Two-Dimensional Diffeomorphism. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 755-770. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a9/

[1] Ya. G. Sinai, Sovremennye problemy ergodicheskoi teorii, Sovremennye problemy matematiki, Fizmatlit, M., 1995 | Zbl

[2] D. Treschev, “Closures of asymptotic curves in a two-dimensional symplectic map”, J. Dynam. Control Systems, 4:3 (1998), 305–314 | DOI | MR | Zbl

[3] V. Rom-Kedar, S. Wiggins, “Transport in two-dimensional maps”, Arch. Rational Mech. Anal., 109:3 (1990), 239–298 | DOI | MR | Zbl

[4] R. W. Easton, “Trellises formed by stable and unstable manifolds in the plane”, Trans. Amer. Math. Soc., 294:2 (1986), 719–732 | DOI | MR | Zbl

[5] A. Yu. Tyurkina, Nekotorye invarianty gomoklinicheskikh tochek analiticheskogo simplekticheskogo otobrazheniya dvumernoi oblasti na sebya, Dimplomnaya rabota, MGU, M., 2004

[6] Zh. Palis, V. Di Melu, Geometricheskaya teoriya dinamicheskikh sistem: Vvedenie, Sovremennaya matematika. Vvodnye kursy, Mir, M., 1986 | MR | Zbl

[7] D. V. Treschev, Vvedenie v teoriyu vozmuschenii gamiltonovykh sistem, Biblioteka studenta-matematika, 6, Fazis, M., 1998 | MR

[8] F. Takens, “Homoclinic points in conservative systems”, Invent. Math., 18:3-4 (1972), 267–292 | DOI | MR | Zbl