Asymptotics of the Basis Functions of Generalized Taylor Series for the Class $H_{\rho,2}$
Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 738-754.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the basis functions $\varphi_{n,k}$ and $\psi_{n,p}$ of generalized Taylor series for the class $H_{\rho,2}$ and obtain asymptotic expansions of the functions $\varphi^{(l)}_{n,0}$ and $\psi^{(l)}_{n,2\cdot4^n-1}$. We prove the existence of an asymptotics for the functions $\varphi_{n,k}$ and $\psi_{n,p}$ for $k\ne 0$ and $p\ne {2\cdot4^n}-1$. The first term of the asymptotic expansions of these functions is obtained.
Keywords: generalized Taylor series, basis functions, the class of functions $H_{\rho,2}$, functional-differential equation.
@article{MZM_2011_89_5_a8,
     author = {V. A. Makarichev},
     title = {Asymptotics of the {Basis} {Functions} of {Generalized} {Taylor} {Series} for the {Class} $H_{\rho,2}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {738--754},
     publisher = {mathdoc},
     volume = {89},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a8/}
}
TY  - JOUR
AU  - V. A. Makarichev
TI  - Asymptotics of the Basis Functions of Generalized Taylor Series for the Class $H_{\rho,2}$
JO  - Matematičeskie zametki
PY  - 2011
SP  - 738
EP  - 754
VL  - 89
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a8/
LA  - ru
ID  - MZM_2011_89_5_a8
ER  - 
%0 Journal Article
%A V. A. Makarichev
%T Asymptotics of the Basis Functions of Generalized Taylor Series for the Class $H_{\rho,2}$
%J Matematičeskie zametki
%D 2011
%P 738-754
%V 89
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a8/
%G ru
%F MZM_2011_89_5_a8
V. A. Makarichev. Asymptotics of the Basis Functions of Generalized Taylor Series for the Class $H_{\rho,2}$. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 738-754. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a8/

[1] V. A. Rvachev, “Obobschennye ryady Teilora dlya beskonechno differentsiruemykh funktsii”, Matematicheskie metody analiza dinamicheskikh sistem, 6, Kharkov, 1982, 99–102

[2] V. A. Rvachev, “Finitnye resheniya funktsionalno-differentsialnykh uravnenii i ikh primeneniya”, UMN, 45:1 (1990), 77–103 | MR | Zbl

[3] V. A. Rvachev, G. A. Starets, “Nekotorye atomarnye funktsii i ikh primenenie”, Dokl. AN USSR. Ser. A, 1983, no. 11, 22–24 | MR | Zbl

[4] V. M. Kuznichenko, “Obobschennye ryady Teilora dlya klassa funktsii $H(\overline\rho,\overline m,r)$”, Matem. zametki, 46:4 (1989), 120–122 | MR | Zbl

[5] Yu. G. Stoyan, V. S. Protsenko, G. P. Manko, I. V. Goncharyuk, L. V. Kurpa, V. A. Rvachev, N. S. Sinekop, I. B. Sirodzha, A. N. Shevchenko, T. I. Sheiko, Teoriya $R$-funktsii i aktualnye problemy prikladnoi matematiki, Naukova dumka, Kiev, 1986 | MR

[6] T. V. Rvacheva, “Ob asimptotike bazisnykh funktsii obobschennogo ryada Teilora”, Vestn. Kharkovsk. nats. un-ta. Ser. Matem., prikl. matem., mekh., 602 (2003), 94–104

[7] V. A. Makarichev, “Asimptotika bazisnykh funktsii obobschennogo ryada Teilora dlya klassa $H_{\rho,2}$”, Vestn. Kharkovsk. nats. un-ta. Ser. Matem., prikl. matem., mekh., 58 (826) (2008), 67–86 | Zbl

[8] G. A. Starets, Odin klass atomarnykh funktsii i ego primenenie, Diss. ... kand. fiz.-matem. nauk, KhGU, Kharkov, 1985