On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman--Singleton Graph
Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 673-685.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hoffman–Singleton graph is the only strongly regular graph with parameters $(50,7,0,1)$. A well-known hypothesis states that a distance-regular graph in which the neighborhood of each vertex is isomorphic to the Hoffman–Singleton graph has intersection array $\{50,42,1;1,2,50\}$ or $\{50,42,9;1,2,42\}$. In the present paper, we prove this hypothesis under the condition that a distance-regular graph is a Terwilliger graph and the graph diameter is at most $5$.
Keywords: distance-regular graph, Terwilliger graph.
Mots-clés : isomorphism
@article{MZM_2011_89_5_a3,
     author = {A. L. Gavrilyuk and A. A. Makhnev},
     title = {On {Terwilliger} {Graphs} in {Which} the {Neighborhood} of {Each} {Vertex} is {Isomorphic} to the {Hoffman--Singleton} {Graph}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {673--685},
     publisher = {mathdoc},
     volume = {89},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a3/}
}
TY  - JOUR
AU  - A. L. Gavrilyuk
AU  - A. A. Makhnev
TI  - On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman--Singleton Graph
JO  - Matematičeskie zametki
PY  - 2011
SP  - 673
EP  - 685
VL  - 89
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a3/
LA  - ru
ID  - MZM_2011_89_5_a3
ER  - 
%0 Journal Article
%A A. L. Gavrilyuk
%A A. A. Makhnev
%T On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman--Singleton Graph
%J Matematičeskie zametki
%D 2011
%P 673-685
%V 89
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a3/
%G ru
%F MZM_2011_89_5_a3
A. L. Gavrilyuk; A. A. Makhnev. On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman--Singleton Graph. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 673-685. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a3/

[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Ergeb. Math. Grenzgeb. (3), 18, Springer-Verlag, Berlin, 1989 | MR | Zbl

[2] A. A. Makhnev, “O grafakh, v kotorykh okrestnosti vershin izomorfny grafu Khofmana–Singltona”, Tr. IMM, 15, no. 2, 2009, 143–161

[3] A. L. Gavrilyuk, A. A. Makhnev, “O distantsionno regulyarnye grafy, v kotorykh okrestnosti vershin izomorfny grafu Khofmana–Singltona”, Dokl. RAN, 428:2 (2009), 157–160 | MR | Zbl

[4] P. Terwilliger, “A new feasibility condition for distance-regular graphs”, Discrete Math., 61:2-3 (1986), 311–315 | DOI | MR | Zbl

[5] A. E. Brouwer, Spectra of graphs. Some course notes, http://www.win.tue.nl/~aeb/

[6] A. Jurišić, J. Koolen, “A local approach to 1-homogeneous graph”, Des. Codes Cryptogr., 21:1-3 (2000), 127–147 | DOI | MR | Zbl