Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_89_5_a3, author = {A. L. Gavrilyuk and A. A. Makhnev}, title = {On {Terwilliger} {Graphs} in {Which} the {Neighborhood} of {Each} {Vertex} is {Isomorphic} to the {Hoffman--Singleton} {Graph}}, journal = {Matemati\v{c}eskie zametki}, pages = {673--685}, publisher = {mathdoc}, volume = {89}, number = {5}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a3/} }
TY - JOUR AU - A. L. Gavrilyuk AU - A. A. Makhnev TI - On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman--Singleton Graph JO - Matematičeskie zametki PY - 2011 SP - 673 EP - 685 VL - 89 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a3/ LA - ru ID - MZM_2011_89_5_a3 ER -
%0 Journal Article %A A. L. Gavrilyuk %A A. A. Makhnev %T On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman--Singleton Graph %J Matematičeskie zametki %D 2011 %P 673-685 %V 89 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a3/ %G ru %F MZM_2011_89_5_a3
A. L. Gavrilyuk; A. A. Makhnev. On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman--Singleton Graph. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 673-685. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a3/
[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Ergeb. Math. Grenzgeb. (3), 18, Springer-Verlag, Berlin, 1989 | MR | Zbl
[2] A. A. Makhnev, “O grafakh, v kotorykh okrestnosti vershin izomorfny grafu Khofmana–Singltona”, Tr. IMM, 15, no. 2, 2009, 143–161
[3] A. L. Gavrilyuk, A. A. Makhnev, “O distantsionno regulyarnye grafy, v kotorykh okrestnosti vershin izomorfny grafu Khofmana–Singltona”, Dokl. RAN, 428:2 (2009), 157–160 | MR | Zbl
[4] P. Terwilliger, “A new feasibility condition for distance-regular graphs”, Discrete Math., 61:2-3 (1986), 311–315 | DOI | MR | Zbl
[5] A. E. Brouwer, Spectra of graphs. Some course notes, http://www.win.tue.nl/~aeb/
[6] A. Jurišić, J. Koolen, “A local approach to 1-homogeneous graph”, Des. Codes Cryptogr., 21:1-3 (2000), 127–147 | DOI | MR | Zbl