On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman--Singleton Graph
Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 673-685

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hoffman–Singleton graph is the only strongly regular graph with parameters $(50,7,0,1)$. A well-known hypothesis states that a distance-regular graph in which the neighborhood of each vertex is isomorphic to the Hoffman–Singleton graph has intersection array $\{50,42,1;1,2,50\}$ or $\{50,42,9;1,2,42\}$. In the present paper, we prove this hypothesis under the condition that a distance-regular graph is a Terwilliger graph and the graph diameter is at most $5$.
Keywords: distance-regular graph, Terwilliger graph.
Mots-clés : isomorphism
@article{MZM_2011_89_5_a3,
     author = {A. L. Gavrilyuk and A. A. Makhnev},
     title = {On {Terwilliger} {Graphs} in {Which} the {Neighborhood} of {Each} {Vertex} is {Isomorphic} to the {Hoffman--Singleton} {Graph}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {673--685},
     publisher = {mathdoc},
     volume = {89},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a3/}
}
TY  - JOUR
AU  - A. L. Gavrilyuk
AU  - A. A. Makhnev
TI  - On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman--Singleton Graph
JO  - Matematičeskie zametki
PY  - 2011
SP  - 673
EP  - 685
VL  - 89
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a3/
LA  - ru
ID  - MZM_2011_89_5_a3
ER  - 
%0 Journal Article
%A A. L. Gavrilyuk
%A A. A. Makhnev
%T On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman--Singleton Graph
%J Matematičeskie zametki
%D 2011
%P 673-685
%V 89
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a3/
%G ru
%F MZM_2011_89_5_a3
A. L. Gavrilyuk; A. A. Makhnev. On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman--Singleton Graph. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 673-685. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a3/