Degenerate Wave Equation with Localized Initial Data: Asymptotic Solutions Corresponding to Various Self-Adjoint Extensions
Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 797-800.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: wave equation, degeneration, localized initial data, asymptotics, Maslov canonical operator, Cauchy problem, self-adjoint extension.
@article{MZM_2011_89_5_a14,
     author = {V. E. Nazaikinskii},
     title = {Degenerate {Wave} {Equation} with {Localized} {Initial} {Data:} {Asymptotic} {Solutions} {Corresponding} to {Various} {Self-Adjoint} {Extensions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {797--800},
     publisher = {mathdoc},
     volume = {89},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a14/}
}
TY  - JOUR
AU  - V. E. Nazaikinskii
TI  - Degenerate Wave Equation with Localized Initial Data: Asymptotic Solutions Corresponding to Various Self-Adjoint Extensions
JO  - Matematičeskie zametki
PY  - 2011
SP  - 797
EP  - 800
VL  - 89
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a14/
LA  - ru
ID  - MZM_2011_89_5_a14
ER  - 
%0 Journal Article
%A V. E. Nazaikinskii
%T Degenerate Wave Equation with Localized Initial Data: Asymptotic Solutions Corresponding to Various Self-Adjoint Extensions
%J Matematičeskie zametki
%D 2011
%P 797-800
%V 89
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a14/
%G ru
%F MZM_2011_89_5_a14
V. E. Nazaikinskii. Degenerate Wave Equation with Localized Initial Data: Asymptotic Solutions Corresponding to Various Self-Adjoint Extensions. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 797-800. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a14/

[1] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, Pure Appl. Math., 4, Interscience Publ., New York, 1957 | MR | Zbl

[2] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996

[3] T. Vukašinac, P. Zhevandrov, Russ. J. Math. Phys., 9:3 (2002), 371–381 | MR | Zbl

[4] S. Yu. Dobrokhotov, B. Tirotstsi, UMN, 65:1 (2010), 185–186 | MR | Zbl

[5] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, Russ. J. Math. Phys., 17:4 (2010), 434–447 | DOI

[6] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirotstsi, Algebra i analiz, 22:6 (2010), 67–90

[7] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR | Zbl

[8] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR | Zbl

[9] S. Yu. Dobrokhotov, S. O. Sinitsyn, B. Tirozzi, Russ. J. Math. Phys., 14:1 (2007), 28–56 | DOI | MR | Zbl

[10] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[11] A. S. Mischenko, B. Yu. Sternin, V. E. Shatalov, Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, M., 1978 | MR

[12] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986 | MR | Zbl