Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_89_5_a13, author = {A. A. Borisenko and E. V. Petrov}, title = {Surfaces in the {Three-Dimensional} {Heisenberg} {Group} on {Which} the {Gauss} {Map} {Has} {Bounded} {Jacobian}}, journal = {Matemati\v{c}eskie zametki}, pages = {794--796}, publisher = {mathdoc}, volume = {89}, number = {5}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a13/} }
TY - JOUR AU - A. A. Borisenko AU - E. V. Petrov TI - Surfaces in the Three-Dimensional Heisenberg Group on Which the Gauss Map Has Bounded Jacobian JO - Matematičeskie zametki PY - 2011 SP - 794 EP - 796 VL - 89 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a13/ LA - ru ID - MZM_2011_89_5_a13 ER -
A. A. Borisenko; E. V. Petrov. Surfaces in the Three-Dimensional Heisenberg Group on Which the Gauss Map Has Bounded Jacobian. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 794-796. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a13/
[1] N. V. Efimov, Matem. sb., 64:2 (1964), 286–320 | MR | Zbl
[2] D. Gilbert, Osnovaniya geometrii, Gostekhizdat, M.-L., 1948 | Zbl
[3] N. V. Efimov, Dokl. AN SSSR, 93:4 (1953), 609–611 | MR | Zbl
[4] N. V. Efimov, Dokl. AN SSSR, 93:3 (1953), 393–395 | MR | Zbl
[5] E. Heinz, Math. Ann., 129:1 (1955), 451–454 | DOI | MR | Zbl
[6] N. V. Efimov, Dokl. AN SSSR, 150:6 (1963), 1206–1209 | MR | Zbl
[7] T. Klotz Milnor, Adv. in Math., 8:3 (1972), 474–543 | DOI | MR | Zbl
[8] N. V. Efimov, Matem. sb., 76:4 (1968), 499–512 | MR | Zbl
[9] P. Skott, Geometrii na trekhmernykh mnogoobraziyakh, Matematika. Novoe v zarubezhnoi nauke, 39, Mir, M., 1986 | Zbl
[10] P. Tomter, “Constant mean curvature surfaces in the Heisenberg group”, Differential Geometry. Partial Differential Equations on Manifolds, Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, RI, 1993, 485–495 | MR | Zbl
[11] A. Sanini, Boll. Un. Mat. Ital. B (7), 11:2, Suppl. (1997), 79–93 | MR | Zbl