Surfaces in the Three-Dimensional Heisenberg Group on Which the Gauss Map Has Bounded Jacobian
Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 794-796.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: three-dimensional Heisenberg group, complete regular surface, Gaussian curvature, Riemannian metric.
Mots-clés : Gauss map, Jacobian of a Gauss map, Lie group
@article{MZM_2011_89_5_a13,
     author = {A. A. Borisenko and E. V. Petrov},
     title = {Surfaces in the {Three-Dimensional} {Heisenberg} {Group} on {Which} the {Gauss} {Map} {Has} {Bounded} {Jacobian}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {794--796},
     publisher = {mathdoc},
     volume = {89},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a13/}
}
TY  - JOUR
AU  - A. A. Borisenko
AU  - E. V. Petrov
TI  - Surfaces in the Three-Dimensional Heisenberg Group on Which the Gauss Map Has Bounded Jacobian
JO  - Matematičeskie zametki
PY  - 2011
SP  - 794
EP  - 796
VL  - 89
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a13/
LA  - ru
ID  - MZM_2011_89_5_a13
ER  - 
%0 Journal Article
%A A. A. Borisenko
%A E. V. Petrov
%T Surfaces in the Three-Dimensional Heisenberg Group on Which the Gauss Map Has Bounded Jacobian
%J Matematičeskie zametki
%D 2011
%P 794-796
%V 89
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a13/
%G ru
%F MZM_2011_89_5_a13
A. A. Borisenko; E. V. Petrov. Surfaces in the Three-Dimensional Heisenberg Group on Which the Gauss Map Has Bounded Jacobian. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 794-796. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a13/

[1] N. V. Efimov, Matem. sb., 64:2 (1964), 286–320 | MR | Zbl

[2] D. Gilbert, Osnovaniya geometrii, Gostekhizdat, M.-L., 1948 | Zbl

[3] N. V. Efimov, Dokl. AN SSSR, 93:4 (1953), 609–611 | MR | Zbl

[4] N. V. Efimov, Dokl. AN SSSR, 93:3 (1953), 393–395 | MR | Zbl

[5] E. Heinz, Math. Ann., 129:1 (1955), 451–454 | DOI | MR | Zbl

[6] N. V. Efimov, Dokl. AN SSSR, 150:6 (1963), 1206–1209 | MR | Zbl

[7] T. Klotz Milnor, Adv. in Math., 8:3 (1972), 474–543 | DOI | MR | Zbl

[8] N. V. Efimov, Matem. sb., 76:4 (1968), 499–512 | MR | Zbl

[9] P. Skott, Geometrii na trekhmernykh mnogoobraziyakh, Matematika. Novoe v zarubezhnoi nauke, 39, Mir, M., 1986 | Zbl

[10] P. Tomter, “Constant mean curvature surfaces in the Heisenberg group”, Differential Geometry. Partial Differential Equations on Manifolds, Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, RI, 1993, 485–495 | MR | Zbl

[11] A. Sanini, Boll. Un. Mat. Ital. B (7), 11:2, Suppl. (1997), 79–93 | MR | Zbl