Examples of Equations of Navier--Stokes Type Not Strongly Solvable in the Large
Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 771-779.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space of functions with values in Hilbert space, we consider the Cauchy problem $u'_t+Au+B(u,u)=f(t)$, $u(0)=0$, $0\le t\le T$. We construct examples of a self-adjoint operator $A\ge E$ and a bilinear transformation $B$ satisfying the condition $\langle B(u,v),v\rangle=0$ such that the Cauchy problem is not strongly solvable.
Keywords: Navier–Stokes equation, self-adjoint operator, bilinear transformation, Cauchy problem, Hilbert space, Sobolev class.
@article{MZM_2011_89_5_a10,
     author = {M. Otelbaev},
     title = {Examples of {Equations} of {Navier--Stokes} {Type} {Not} {Strongly} {Solvable} in the {Large}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {771--779},
     publisher = {mathdoc},
     volume = {89},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a10/}
}
TY  - JOUR
AU  - M. Otelbaev
TI  - Examples of Equations of Navier--Stokes Type Not Strongly Solvable in the Large
JO  - Matematičeskie zametki
PY  - 2011
SP  - 771
EP  - 779
VL  - 89
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a10/
LA  - ru
ID  - MZM_2011_89_5_a10
ER  - 
%0 Journal Article
%A M. Otelbaev
%T Examples of Equations of Navier--Stokes Type Not Strongly Solvable in the Large
%J Matematičeskie zametki
%D 2011
%P 771-779
%V 89
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a10/
%G ru
%F MZM_2011_89_5_a10
M. Otelbaev. Examples of Equations of Navier--Stokes Type Not Strongly Solvable in the Large. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 771-779. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a10/

[1] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraveykh zadach, Mir, M., 1972 | MR | Zbl

[2] M. Otelbaev, “O svoistvakh odnogo klassa uravnenii tipa Nave–Stoksa”, Rossiisko-Kazakhstanskii simpozium, Elburs, Nalchik, 2004, 140–145

[3] M. Otelbaev, A. A. Durmagambetov, E. N. Seitkulov, “Usloviya suschestvovaniya silnogo resheniya v tselom odnogo klassa nelineinykh evolyutsionnykh uravnenii v gilbertovom prostranstve”, Dokl. RAN, 408:4 (2006), 446–449 | MR

[4] M. Otelbaev, A. A. Durmagambetov, E. N. Seitkulov, “Usloviya suschestvovaniya silnogo resheniya v tselom odnogo klassa nelineinykh evolyutsionnykh uravnenii v gilbertovom prostranstve”, Sib. matem. zhurn., 49:3 (2008), 620–634 | MR | Zbl

[5] M. Otelbaev, A. A. Durmagambetov, E. N. Seitkulov, “Usloviya suschestvovaniya silnogo resheniya v tselom odnogo klassa nelineinykh evolyutsionnykh uravnenii v gilbertovom prostranstve”, Teoriya funktsii i nelineinye uravneniya v chastnykh proizvodnykh, Sbornik statei. K 70-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Stanislava Ivanovicha Pokhozhaeva, Tr. MIAN, 260, MAIK, M., 2008, 202–212 | MR