On the Zeros of the Riemann Zeta Function of Large Multiplicity
Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 652-657
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain a new upper bound for the number of zeros of the Riemann zeta function of a given multiplicity lying in a given rectangle of the critical strip.
Keywords:
Riemann zeta function, zeros of the Riemann zeta function, Fujii's inequality, Lagrange's mean-value theorem.
@article{MZM_2011_89_5_a1,
author = {R. N. Boyarinov},
title = {On the {Zeros} of the {Riemann} {Zeta} {Function} of {Large} {Multiplicity}},
journal = {Matemati\v{c}eskie zametki},
pages = {652--657},
year = {2011},
volume = {89},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a1/}
}
R. N. Boyarinov. On the Zeros of the Riemann Zeta Function of Large Multiplicity. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 652-657. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a1/
[1] M. A. Korolev, “O kratnykh nulyakh dzeta-funktsii Rimana”, Izv. RAN. Ser. matem., 70:3 (2006), 3–22 | MR | Zbl
[2] A. A. Karatsuba, M. A. Korolev, “Argument dzeta-funktsii Rimana”, UMN, 60:3 (2005), 41–96 | MR | Zbl
[3] A. Fujii, “On the distribution of the zeros of the Riemann zeta function in short intervals”, Bull. Amer. Math. Soc., 81:1 (1975), 139–142 | DOI | MR | Zbl