Exponents of Identities of Group Rings
Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 643-651.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, quantitative characteristics of identities of group algebras of finite groups are studied. A series of relations connecting the PI-exponents of identities with involution and Lie identities of the group algebra itself and of its Lie subalgebra of skew-symmetric elements are obtained.
Keywords: finite group, group ring, identity of a ring, Lie algebra, group algebra, PI-algebra, graded algebra, irreducible representation.
@article{MZM_2011_89_5_a0,
     author = {O. E. Bezushchak and M. V. Zaitsev},
     title = {Exponents of {Identities} of {Group} {Rings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--651},
     publisher = {mathdoc},
     volume = {89},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a0/}
}
TY  - JOUR
AU  - O. E. Bezushchak
AU  - M. V. Zaitsev
TI  - Exponents of Identities of Group Rings
JO  - Matematičeskie zametki
PY  - 2011
SP  - 643
EP  - 651
VL  - 89
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a0/
LA  - ru
ID  - MZM_2011_89_5_a0
ER  - 
%0 Journal Article
%A O. E. Bezushchak
%A M. V. Zaitsev
%T Exponents of Identities of Group Rings
%J Matematičeskie zametki
%D 2011
%P 643-651
%V 89
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a0/
%G ru
%F MZM_2011_89_5_a0
O. E. Bezushchak; M. V. Zaitsev. Exponents of Identities of Group Rings. Matematičeskie zametki, Tome 89 (2011) no. 5, pp. 643-651. http://geodesic.mathdoc.fr/item/MZM_2011_89_5_a0/

[1] I. M. Isaacs, D. S. Passman, “Groups with representations of bounded degree”, Canad. J. Math., 16 (1964), 299–309 | DOI | MR | Zbl

[2] D. S. Passman, “Group rings satisfying a polynomial identity”, J. Algebra, 20:1 (1972), 103–117 | DOI | MR | Zbl

[3] D. S. Passman, The Algebraic Structure of Group Rings, Pure Appl. Math., John Wiley Sons, New York, 1977 | MR | Zbl

[4] J. Bergen, M. Cohen, “Action of commutative Hopf algebra”, Bull. London Math. Soc., 18:2 (1986), 159–164 | DOI | MR | Zbl

[5] Yu. Bahturin, A. Giambruno, D. M. Riley, “Group-graded algebras with polynomial identity”, Israel J. Math., 104:1 (1998), 145–155 | DOI | MR | Zbl

[6] Yu. A. Bahturin, M. V. Zaicev, “Identities of graded algebras and codimension growth”, Trans. Amer. Math. Soc., 356:10 (2004), 3939–3950 | DOI | MR | Zbl

[7] E. Aljadeff, On the Codimension Growth of $G$-graded Algebras, arXiv: math.RA/0908.2385

[8] A. Giambruno, M. Zaicev, “Lie, Jordan and proper codimensions of associative algebras”, Rend. Circ. Mat. Palermo (2), 57:2 (2008), 161–171 | DOI | MR | Zbl

[9] S. A. Amitsur, “Rings with involution”, Israel J. Math., 6:2 (1968), 99–106 | DOI | MR | Zbl

[10] S. A. Amitsur, “Identities in rings with involutions”, Israel J. Math., 7:1 (1969), 63–68 | DOI | MR | Zbl

[11] Yu. A. Bakhturin, Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[12] A. Regev, “Existence of identities in $A\otimes B$”, Israel J. Math., 11:2 (1972), 131–152 | DOI | MR | Zbl

[13] M. V. Zaitsev, “Tselochislennost eksponent rosta tozhdestv konechnomernykh algebr Li”, Izv. RAN. Ser. matem., 66:3 (2002), 23–48 | MR | Zbl

[14] A. Giambruno, M. Zaicev, “Involution codimensions of finite dimensional algebras and exponential growth”, J. Algebra, 222:2 (1999), 471–484 | DOI | MR | Zbl

[15] L. Rowen, Ring Theory, v. 1, Pure Appl. Math., 127, Academic Press, Boston, MA, 1988 | MR | Zbl

[16] A. Giambruno, A. Regev, M. V. Zaicev, “Simple and semisimple Lie algebras and codimension growth”, Trans. Amer. Math. Soc., 352:4 (2000), 1935–1946 | DOI | MR | Zbl

[17] M. Goto, F. Grosskhans, Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl

[18] G. Dzheims, Teoriya predstavlenii simmetricheskikh grupp, Matematika. Novoe v zarubezhnoi nauke, 32, Nauka, M., 1982 | MR | Zbl

[19] B. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, Grad. Texts in Math., 203, Springer–Verlag, New York, 2001 | MR | Zbl