Universal Spaces of Subdifferentials of Sublinear Operators Ranging in the Cone of Bounded Lower Semicontinuous Functions
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 547-557.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Fréchet's problem of the universal space for the subdifferentials $\partial P$ of continuous sublinear operators $P\colon V\to BC(X)_{\sim}$ which are defined on separable Banach spaces $V$ and range in the cone $BC(X)_\sim$ of bounded lower semicontinuous functions on a normal topological space $X$. We prove that the space of linear compact operators $L^{\mathrm c}(\ell^2,C(\beta X))$ is universal in the topology of simple convergence. Here $\ell^2$ is a separable Hilbert space, and $\beta X$ is the Stone–Ĉech compactification of $X$. We show that the images of subdifferentials are also subdifferentials of sublinear operators.
Keywords: sublinear operator, subdifferential, topology of simple convergence, lower semicontinuous function, Fréchet problem for universal spaces, separable Banach space, continuous selection.
@article{MZM_2011_89_4_a6,
     author = {Yu. E. Linke},
     title = {Universal {Spaces} of {Subdifferentials} of {Sublinear} {Operators} {Ranging} in the {Cone} of {Bounded} {Lower} {Semicontinuous} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {547--557},
     publisher = {mathdoc},
     volume = {89},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a6/}
}
TY  - JOUR
AU  - Yu. E. Linke
TI  - Universal Spaces of Subdifferentials of Sublinear Operators Ranging in the Cone of Bounded Lower Semicontinuous Functions
JO  - Matematičeskie zametki
PY  - 2011
SP  - 547
EP  - 557
VL  - 89
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a6/
LA  - ru
ID  - MZM_2011_89_4_a6
ER  - 
%0 Journal Article
%A Yu. E. Linke
%T Universal Spaces of Subdifferentials of Sublinear Operators Ranging in the Cone of Bounded Lower Semicontinuous Functions
%J Matematičeskie zametki
%D 2011
%P 547-557
%V 89
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a6/
%G ru
%F MZM_2011_89_4_a6
Yu. E. Linke. Universal Spaces of Subdifferentials of Sublinear Operators Ranging in the Cone of Bounded Lower Semicontinuous Functions. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 547-557. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a6/

[1] Yu. E. Linke, “Primeneniya teoremy Maikla i ee obrascheniya k sublineinym operatoram”, Matem. zametki, 52:1 (1992), 67–75 | MR | Zbl

[2] Yu. E. Linke, “O konuse ogranichennykh polunepreryvnykh snizu funktsii”, Matem. zametki, 77:6 (2005), 886–902 | MR | Zbl

[3] Yu. E. Linke, “Ob opornykh mnozhestvakh sublineinykh operatorov”, Dokl. AN SSSR, 207:3 (1972), 531–533 | MR | Zbl

[4] I. Gelfand, “Abstrakte Funktionen und lineare Operatoren”, Matem. sb., 4(46):2 (1938), 235–286 | Zbl

[5] R. G. Bartle, “On compactness in functional analysis”, Trans. Amer. Math. Soc., 79 (1955), 35–57 | MR | Zbl

[6] N. Danford, Dzh. Shvarts, Lineinye operatory, v. 1, Obschaya teoriya, IL, M., 1962 | MR | Zbl

[7] V. L. Klee, Jr., “Some topological properties of convex sets”, Trans. Amer. Math. Soc., 78 (1955), 30–45 | MR | Zbl

[8] C. Bessaga, A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, Monografie Matematyczne, 58, PWN, Warszawa, 1975 | MR | Zbl

[9] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR | Zbl

[10] I. M. Gelfand, A. N. Kolmogorov, “O koltsakh nepreryvnykh funktsii na topologicheskikh prostranstvakh”, Dokl. AN SSSR, 22:1 (1939), 11–15 | Zbl

[11] M. M. Dei, Normirovannye lineinye prostranstva, IL, M., 1961 | MR | Zbl

[12] L. Hörmander, “Sur la fonction d'appui des ensembles convexes dans une espace lokalement convexe”, Ark.Mat., 3:2 (1955), 181–186 | DOI | MR | Zbl