Universal Spaces of Subdifferentials of Sublinear Operators Ranging in the Cone of Bounded Lower Semicontinuous Functions
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 547-557
Voir la notice de l'article provenant de la source Math-Net.Ru
We study Fréchet's problem of the universal space for the subdifferentials $\partial P$ of continuous sublinear operators $P\colon V\to BC(X)_{\sim}$ which are defined on separable Banach spaces $V$ and range in the cone $BC(X)_\sim$ of bounded lower semicontinuous functions on a normal topological space $X$. We prove that the space of linear compact operators $L^{\mathrm c}(\ell^2,C(\beta X))$ is universal in the topology of simple convergence. Here $\ell^2$ is a separable Hilbert space, and $\beta X$ is the Stone–Ĉech compactification of $X$. We show that the images of subdifferentials are also subdifferentials of sublinear operators.
Keywords:
sublinear operator, subdifferential, topology of simple convergence, lower semicontinuous function, Fréchet problem for universal spaces, separable Banach space, continuous selection.
@article{MZM_2011_89_4_a6,
author = {Yu. E. Linke},
title = {Universal {Spaces} of {Subdifferentials} of {Sublinear} {Operators} {Ranging} in the {Cone} of {Bounded} {Lower} {Semicontinuous} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {547--557},
publisher = {mathdoc},
volume = {89},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a6/}
}
TY - JOUR AU - Yu. E. Linke TI - Universal Spaces of Subdifferentials of Sublinear Operators Ranging in the Cone of Bounded Lower Semicontinuous Functions JO - Matematičeskie zametki PY - 2011 SP - 547 EP - 557 VL - 89 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a6/ LA - ru ID - MZM_2011_89_4_a6 ER -
%0 Journal Article %A Yu. E. Linke %T Universal Spaces of Subdifferentials of Sublinear Operators Ranging in the Cone of Bounded Lower Semicontinuous Functions %J Matematičeskie zametki %D 2011 %P 547-557 %V 89 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a6/ %G ru %F MZM_2011_89_4_a6
Yu. E. Linke. Universal Spaces of Subdifferentials of Sublinear Operators Ranging in the Cone of Bounded Lower Semicontinuous Functions. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 547-557. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a6/