New Estimates of the Remainder in an Asymptotic Formula in the Multidimensional Dirichlet Divisor Problem
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 530-546.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a new value of the Karatsuba constant in the multidimensional Dirichlet divisor problem. We also find a new value of the exponent of the main parameter in the estimate of the mean value of the remainder in a given asymptotics. The proof of the main statements is based on the derivation of a new estimate of the Carleson abscissa in the theory of the Riemann zeta function.
Keywords: Dirichlet divisor problem, Riemann zeta function, Carleson exponent, Dirichlet series.
Mots-clés : Karatsuba constant
@article{MZM_2011_89_4_a5,
     author = {O. V. Kolpakova},
     title = {New {Estimates} of the {Remainder} in an {Asymptotic} {Formula} in the {Multidimensional} {Dirichlet} {Divisor} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {530--546},
     publisher = {mathdoc},
     volume = {89},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a5/}
}
TY  - JOUR
AU  - O. V. Kolpakova
TI  - New Estimates of the Remainder in an Asymptotic Formula in the Multidimensional Dirichlet Divisor Problem
JO  - Matematičeskie zametki
PY  - 2011
SP  - 530
EP  - 546
VL  - 89
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a5/
LA  - ru
ID  - MZM_2011_89_4_a5
ER  - 
%0 Journal Article
%A O. V. Kolpakova
%T New Estimates of the Remainder in an Asymptotic Formula in the Multidimensional Dirichlet Divisor Problem
%J Matematičeskie zametki
%D 2011
%P 530-546
%V 89
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a5/
%G ru
%F MZM_2011_89_4_a5
O. V. Kolpakova. New Estimates of the Remainder in an Asymptotic Formula in the Multidimensional Dirichlet Divisor Problem. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 530-546. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a5/

[1] P. G. L. Dirichlet, “Über die Bestimmung der mittleren Werthe in der Zahlentheorie”, Abh. Acad. Wiss. Berlin, 1849, 69–83; Werke, Bd. 2, 49–66

[2] G. Voronoï, “Sur un problème du calcul des fonctions asymptotiques”, Reine Angew. Math., 126 (1903), 241–282 | Zbl

[3] E. Landau, “Über die Anzahl der Gitterpunkte in gewissen Bereichen”, Gött. Nachr., 1912, 687–770 | Zbl

[4] G. H. Hardy, J. E. Littlewood, “The approximate functional equation in the theory of the zeta-function, with applications to the divisor-problems of Dirichlet and Piltz”, Proc. London Math. Soc. (2), 21 (1922), 39–74 | Zbl

[5] J. G. van der Corput, “Verschärfung der Abschätzung beim Teilerproblem”, Math. Ann., 87:1-2 (1922), 39–65 | DOI | MR | Zbl

[6] K. C. Tong, “On diviser problems”, Acta Math. Sinica (Chin. Ser.), 2 (1952), 258–266

[7] A. Walfisz, “Über zwei Gitterpunktprobleme”, Math. Ann., 95:1 (1926), 69–83 | DOI | MR

[8] F. V. Atkinson, “A divisor problem”, Quart. J. Math., Oxford Ser., 12:1 (1941), 193–200 | DOI | MR | Zbl

[9] T. Chih, “The Dirichlet's divisor problem”, Sci. Rep. Nat. Tsing Hua Univ. Ser. A, 5 (1950), 402–427 | MR

[10] H.-E. Richert, “Vershärfung der Abschärzung beim Dirichletschen Teilerproblem”, Math. Z., 58:1 (1953), 204–218 | DOI | MR | Zbl

[11] J. Chen, “On the divisor problem for $d_3(n)$”, Sci. Sinica, 14 (1965), 19–29 | MR | Zbl

[12] A. A. Karatsuba, “Ravnomernaya otsenka ostatochnogo chlena v probleme delitelei Dirikhle”, Izv. AN SSSR. Ser. matem., 36:3 (1972), 475–483 | MR | Zbl

[13] G. A. Kolesnik, “Uluchshenie ostatochnogo chlena v probleme delitelei”, Matem. zametki, 6:5 (1969), 545–554 | MR | Zbl

[14] A. Ivić, “Some recent results on the Riemann zeta-function”, Théorie des nombres (Quebec, PQ, 1987), de Gruyter, Berlin, 1989, 424–440 | MR | Zbl

[15] A. Ivić, M. Ouellet, “Some new estimates in the Dirichlet divisor problem”, Acta Arith., 52:3 (1989), 241–253 | MR | Zbl

[16] E. E. Bayadilov, “O probleme delitelei dlya znachenii ternarnoi kubicheskoi formy”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1999, no. 1, 58–60 | MR | Zbl

[17] K. Ford, “Vinogradov's integral and bounds for the riemann zeta function”, Proc. London Math. Soc. (3), 85:3 (2002), 565–633 | DOI | MR | Zbl

[18] H.-E. Richert, “Einführung in die Theorie der starken Rieszschen Summierbarkeit von Dirichletreihen”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1960 (1960), 17–75 | MR | Zbl

[19] A. A. Karatsuba, “Otsenki trigonometricheskikh summ I. M. Vinogradova i ikh primeneniya”, Tr. MIAN SSSR, 112, 1971, 241–255 | MR | Zbl

[20] A. Fujii, “On the problem of divisors”, Acta Arith., 31:4 (1976), 355–360 | MR | Zbl

[21] E. I. Panteleeva, “K voprosu o probleme delitelei Dirikhle v chislovykh polyakh”, Matem. zametki, 44:4 (1988), 494–505 | MR | Zbl

[22] E. K. Titchmarsh, Teoriya dzeta-funktsii Rimana, IL, M., 1953 | MR | Zbl

[23] A. Ivić, The Riemann Zeta-Function. The Theory of the Riemann Zeta-Function with Applications, Wiley-Intersci. Publ., John Wiley Sons, New York, 1985 | MR | Zbl

[24] E. C. Titchmarsh, “On the remainder in the formula for $N(T)$, the number of zeros of $\zeta(s)$ in the strip $0$”, Proc. London Math. Soc. (2), 27:1 (1928), 449–458 | DOI | Zbl

[25] G. I. Arkhipov, K. Buriev, “Refinement of estimates for the riemann zeta-function in a neighbourhood of the line $\operatorname{Re}s=1$”, Integral Transform. Spec. Funct., 1:1 (1993), 1–7 | DOI | MR | Zbl