New Estimates of the Remainder in an Asymptotic Formula in the Multidimensional Dirichlet Divisor Problem
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 530-546
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a new value of the Karatsuba constant in the multidimensional Dirichlet divisor problem. We also find a new value of the exponent of the main parameter in the estimate of the mean value of the remainder in a given asymptotics. The proof of the main statements is based on the derivation of a new estimate of the Carleson abscissa in the theory of the Riemann zeta function.
Keywords:
Dirichlet divisor problem, Riemann zeta function, Carleson exponent, Dirichlet series.
Mots-clés : Karatsuba constant
Mots-clés : Karatsuba constant
@article{MZM_2011_89_4_a5,
author = {O. V. Kolpakova},
title = {New {Estimates} of the {Remainder} in an {Asymptotic} {Formula} in the {Multidimensional} {Dirichlet} {Divisor} {Problem}},
journal = {Matemati\v{c}eskie zametki},
pages = {530--546},
publisher = {mathdoc},
volume = {89},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a5/}
}
TY - JOUR AU - O. V. Kolpakova TI - New Estimates of the Remainder in an Asymptotic Formula in the Multidimensional Dirichlet Divisor Problem JO - Matematičeskie zametki PY - 2011 SP - 530 EP - 546 VL - 89 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a5/ LA - ru ID - MZM_2011_89_4_a5 ER -
O. V. Kolpakova. New Estimates of the Remainder in an Asymptotic Formula in the Multidimensional Dirichlet Divisor Problem. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 530-546. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a5/