Subgroups of a Finite Group Commuting with Biprimary Subgroups
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 524-529
Voir la notice de l'article provenant de la source Math-Net.Ru
The solvability of $H/H_G$ is established under the assumption that a subgroup $H$ of a finite group $G$ commutes with all biprimary subgroups of even order.
Keywords:
finite group, biprimary subgroup, core of a subgroup, Sylow subgroup, dispersive subgroup, formation of groups.
Mots-clés : solvable finite group, Frobenius group
Mots-clés : solvable finite group, Frobenius group
@article{MZM_2011_89_4_a4,
author = {V. N. Knyagina and V. S. Monakhov},
title = {Subgroups of a {Finite} {Group} {Commuting} with {Biprimary} {Subgroups}},
journal = {Matemati\v{c}eskie zametki},
pages = {524--529},
publisher = {mathdoc},
volume = {89},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a4/}
}
V. N. Knyagina; V. S. Monakhov. Subgroups of a Finite Group Commuting with Biprimary Subgroups. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 524-529. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a4/