Subgroups of a Finite Group Commuting with Biprimary Subgroups
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 524-529.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of $H/H_G$ is established under the assumption that a subgroup $H$ of a finite group $G$ commutes with all biprimary subgroups of even order.
Keywords: finite group, biprimary subgroup, core of a subgroup, Sylow subgroup, dispersive subgroup, formation of groups.
Mots-clés : solvable finite group, Frobenius group
@article{MZM_2011_89_4_a4,
     author = {V. N. Knyagina and V. S. Monakhov},
     title = {Subgroups of a {Finite} {Group} {Commuting} with {Biprimary} {Subgroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {524--529},
     publisher = {mathdoc},
     volume = {89},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a4/}
}
TY  - JOUR
AU  - V. N. Knyagina
AU  - V. S. Monakhov
TI  - Subgroups of a Finite Group Commuting with Biprimary Subgroups
JO  - Matematičeskie zametki
PY  - 2011
SP  - 524
EP  - 529
VL  - 89
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a4/
LA  - ru
ID  - MZM_2011_89_4_a4
ER  - 
%0 Journal Article
%A V. N. Knyagina
%A V. S. Monakhov
%T Subgroups of a Finite Group Commuting with Biprimary Subgroups
%J Matematičeskie zametki
%D 2011
%P 524-529
%V 89
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a4/
%G ru
%F MZM_2011_89_4_a4
V. N. Knyagina; V. S. Monakhov. Subgroups of a Finite Group Commuting with Biprimary Subgroups. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 524-529. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a4/

[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[2] L. A. Shemetkov, Formatsii konechnykh grupp, Sovremennaya algebra, Nauka, M., 1978 | MR | Zbl

[3] B. Huppert, Endliche Gruppen, v. I, Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin, 1967 | MR | Zbl

[4] E. M. Palchik, “O $b$-kvazinormalnykh podgruppakh”, Dokl. AN BSSR, 11:11 (1967), 967–969 | MR | Zbl

[5] Ya. G. Berkovich, E. M. Palchik, “O perestanovochnosti podgrupp konechnoi gruppy”, Sib. matem. zhurn., 8:4 (1967), 741–753 | MR | Zbl

[6] M. Suzuki, Group Theory, v. II, Grundlehren Math. Wiss., Springer-Verlag, New York, 1986 | MR | Zbl

[7] N. Itô, J. Szép, “Über die Quasinormalteiler von endlichen Gruppen”, Acta Sci. Math. (Szeged), 23 (1962), 168–170 | MR | Zbl