On the Order of Approximation by Riesz Means in Multiplicative Systems in the Classes~$E_X[\varepsilon]$
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 508-523.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the order of approximation by Riesz means of the Fourier series in a multiplicative system of a class of functions with given majorant of the sequence of best approximations. In some cases, approximations by Riesz means and best approximations are considered in a specific space, but, in other cases, approximations by Riesz means are considered in spaces with a stronger norm.
Keywords: Riesz mean, approximation by Riesz means, Fourier series, multiplicative system, Vilenkin system, Dirichlet kernel, Hardy space.
Mots-clés : Fejér kernel
@article{MZM_2011_89_4_a3,
     author = {T. V. Iofina},
     title = {On the {Order} of {Approximation} by {Riesz} {Means} in {Multiplicative} {Systems} in the {Classes~}$E_X[\varepsilon]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {508--523},
     publisher = {mathdoc},
     volume = {89},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a3/}
}
TY  - JOUR
AU  - T. V. Iofina
TI  - On the Order of Approximation by Riesz Means in Multiplicative Systems in the Classes~$E_X[\varepsilon]$
JO  - Matematičeskie zametki
PY  - 2011
SP  - 508
EP  - 523
VL  - 89
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a3/
LA  - ru
ID  - MZM_2011_89_4_a3
ER  - 
%0 Journal Article
%A T. V. Iofina
%T On the Order of Approximation by Riesz Means in Multiplicative Systems in the Classes~$E_X[\varepsilon]$
%J Matematičeskie zametki
%D 2011
%P 508-523
%V 89
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a3/
%G ru
%F MZM_2011_89_4_a3
T. V. Iofina. On the Order of Approximation by Riesz Means in Multiplicative Systems in the Classes~$E_X[\varepsilon]$. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 508-523. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a3/

[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[2] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Elm, Baku, 1981 | MR | Zbl

[3] F. Schipp, W. R. Wade, P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Akad. Kiadó, Budapest, 1990 | MR | Zbl

[4] S. S. Volosivets, “Priblizhenie funktsii ogranichennoi $p$-fluktuatsii polinomami po multiplikativnym sistemam”, Anal. Math., 21:1 (1995), 61–77 | DOI | MR | Zbl

[5] H. Zelin, “The derivatives and integrals of fractional order in Walsh–Fourier analysis, with applications to approximation theory”, J. Approx. Theory, 39:4 (1983), 361–373 | DOI | MR | Zbl

[6] N. A. Ilyasov, “Priblizhenie periodicheskikh funktsii srednimi Zigmunda”, Matem. zametki, 39:3 (1986), 367–382 | MR | Zbl

[7] N. A. Ilyasov, “O poryadke priblizheniya v ravnomernoi metrike srednimi Feiera–Zigmunda na klassakh $E_p[\varepsilon]$”, Matem. zametki, 69:5 (2001), 679–687 | MR | Zbl

[8] S. S. Volosivets, “Skhodimost ryadov Fure po multiplikativnym sistemam i $p$-fluktuatsionnyi modul nepreryvnosti”, Sib. matem. zhurn., 47:2 (2006), 241–258 | MR | Zbl

[9] S. L. Blyumin, “O lineinykh metodakh summirovaniya ryadov Fure po multiplikativnym sistemam”, Sib. matem. zhurnal, 9:2 (1968), 449–455 | MR | Zbl

[10] S. L. Blyumin, “Nekotorye svoistva odnogo klassa multiplikativnykh sistem i voprosy priblizheniya funktsii polinomami po etim sistemam”, Izv. vuzov. Matem., 1968, no. 4, 13–22 | MR | Zbl

[11] N. Ya. Vilenkin, “K teorii lakunarnykh ortogonalnykh sistem”, Izv. AN SSSR. Ser. matem., 13:3 (1949), 245–252 | MR | Zbl

[12] C. Watari, “On generalized Walsh Fourier series”, Tôhoku Math. J. (2), 10:3 (1958), 211–241 | DOI | MR | Zbl

[13] J.-A. Chao, “Hardy spaces on regular martingales”, Martingale Theory in Harmonic Analysis and Banach Spaces, Lecture Notes in Math., 939, Springer-Verlag, Berlin, 1982, 18–28 | DOI | MR | Zbl

[14] F. Weisz, Martingale Hardy Spaces and their Applications in Fourier Analysis, Lecture Notes in Math., 1568, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl

[15] S. Kachmazh, G. Shteingauz, Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR | Zbl

[16] A. P. Terekhin, “Integralnye svoistva gladkosti periodicheskikh funktsii ogranichennoi $p$-variatsii”, Matem. zametki, 2:3 (1967), 289–300 | MR | Zbl