Functions Generating Normal Toeplitz Matrices
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 503-507
Cet article a éte moissonné depuis la source Math-Net.Ru
To any complex function there corresponds a Fourier series, which is often associated with a sequence $\{T_n\}$ of Toeplitz $n\times n$ matrices. Functions whose Fourier series generate sequences of normal Toeplitz matrices are classified, and a procedure for constructing Fourier series for which the sequence $\{T_n\}$ contains an infinite subsequence of normal matrices is described.
Keywords:
complex Fourier series, Toeplitz matrix, Hermitian Toeplitz matrix
Mots-clés : normal matrix, circulant matrix.
Mots-clés : normal matrix, circulant matrix.
@article{MZM_2011_89_4_a2,
author = {N. L. Zamarashkin and E. E. Tyrtyshnikov and V. N. Chugunov},
title = {Functions {Generating} {Normal} {Toeplitz} {Matrices}},
journal = {Matemati\v{c}eskie zametki},
pages = {503--507},
year = {2011},
volume = {89},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a2/}
}
N. L. Zamarashkin; E. E. Tyrtyshnikov; V. N. Chugunov. Functions Generating Normal Toeplitz Matrices. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 503-507. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a2/
[1] U. Grenander, G. Szegő, Toeplitz Forms and their Applications, California Monogr. in Math. Sci., Univ. of California Press, Berkeley, 1958 | MR | Zbl
[2] Kh. D. Ikramov, V. N. Chugunov, “Kriterii normalnosti kompleksnoi teplitsevoi matritsy”, Zh. vychisl. matem. i matem. fiz., 36:2 (1996), 3–10 | MR | Zbl
[3] A. Zigmund, Trigonometricheskie ryady, Mir, M., 1965 | MR | Zbl | Zbl