Curvatures of the Tangent Bundle with a Special Almost Product Metric
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 603-607.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a class of Riemannian almost product metrics on the tangent bundle of a smooth manifold. This class includes the Sasaki and Cheeger–Gromoll metrics as special cases. For this class of metrics, we find the dependence of the scalar curvature of the tangent bundle on objects of the base manifold. For the case in which the base manifold is a space of constant sectional curvature, we obtain conditions on the metric and the dimension of the base under which the scalar curvature of the tangent bundle is constant. For special cases of metrics of the class considered, we find the intervals on which the scalar curvature of the tangent bundle treated as a function of the sectional curvature of the base has constant sign.
Keywords: tangent bundle, almost product metric, Sasaki metric, Cheeger–Gromoll metric, scalar curvature, sectional curvature.
@article{MZM_2011_89_4_a11,
     author = {O. V. Sukhova},
     title = {Curvatures of the {Tangent} {Bundle} with a {Special} {Almost} {Product} {Metric}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {603--607},
     publisher = {mathdoc},
     volume = {89},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a11/}
}
TY  - JOUR
AU  - O. V. Sukhova
TI  - Curvatures of the Tangent Bundle with a Special Almost Product Metric
JO  - Matematičeskie zametki
PY  - 2011
SP  - 603
EP  - 607
VL  - 89
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a11/
LA  - ru
ID  - MZM_2011_89_4_a11
ER  - 
%0 Journal Article
%A O. V. Sukhova
%T Curvatures of the Tangent Bundle with a Special Almost Product Metric
%J Matematičeskie zametki
%D 2011
%P 603-607
%V 89
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a11/
%G ru
%F MZM_2011_89_4_a11
O. V. Sukhova. Curvatures of the Tangent Bundle with a Special Almost Product Metric. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 603-607. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a11/

[1] S. Sasaki, “On the differential geometry of tangent bundles of Riemannian manifolds”, Tôhoku Math. J. (2), 10:3 (1958), 338–354 | DOI | MR | Zbl

[2] M. Sekizawa, “Curvatures of tangent bundles with Cheeger–Gromoll metric”, Tokyo J. Math., 14:2 (1991), 407–417 | DOI | MR | Zbl

[3] S. Gudmundsson, E. Kappos, “On the geometry of the tangent bundle with the Cheeger–Gromoll metric”, Tokyo J. Math., 25:1 (2002), 75–83 | DOI | MR | Zbl

[4] D. Gromol, V. Klingenberg, V. Meier, Rimanova geometriya v tselom, Mir, M., 1971 | MR | Zbl