Nonlocal Problem for a Parabolic-Hyperbolic Equation in a Rectangular Domain
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 596-602.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an equation of mixed type, namely, $$ (1-\operatorname{sgn}t)u_{tt}+(1-\operatorname{sgn}t)u_{t}-2u_{xx}=0 $$ in the domain $\{(x,t)\mid0$, where $\alpha$, $\beta$ are given positive real numbers, we study the problem with boundary conditions $$ u(0,t)=u(1,t)=0,\quad -\alpha\le t\le\beta,\qquad u(x,-\alpha)-u(x,\beta)=\varphi(x),\quad 0\le x\le1. $$ We establish a uniqueness criterion for the solution constructed as the sum of Fourier series. We establish the stability of the solution with respect to its nonlocal condition $\varphi(x)$.
Keywords: parabolic-hyperbolic equation, Fourier series, initial boundary-value problem, differential equation, Weierstrass test.
Mots-clés : nonlocal condition
@article{MZM_2011_89_4_a10,
     author = {K. B. Sabitov},
     title = {Nonlocal {Problem} for a {Parabolic-Hyperbolic} {Equation} in a {Rectangular} {Domain}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {596--602},
     publisher = {mathdoc},
     volume = {89},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a10/}
}
TY  - JOUR
AU  - K. B. Sabitov
TI  - Nonlocal Problem for a Parabolic-Hyperbolic Equation in a Rectangular Domain
JO  - Matematičeskie zametki
PY  - 2011
SP  - 596
EP  - 602
VL  - 89
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a10/
LA  - ru
ID  - MZM_2011_89_4_a10
ER  - 
%0 Journal Article
%A K. B. Sabitov
%T Nonlocal Problem for a Parabolic-Hyperbolic Equation in a Rectangular Domain
%J Matematičeskie zametki
%D 2011
%P 596-602
%V 89
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a10/
%G ru
%F MZM_2011_89_4_a10
K. B. Sabitov. Nonlocal Problem for a Parabolic-Hyperbolic Equation in a Rectangular Domain. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 596-602. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a10/

[1] F. I. Frankl, “Obtekanie profilei potokom dozvukovoi skorosti so sverkhzvukovoi zonoi, okanchivayuscheisya pryamym skachkom ukloneniya”, PMM, 20:2 (1956), 196–202 | MR | Zbl

[2] A. V. Bitsadze, A. A. Samarskii, “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, Dokl. AN SSSR, 185 (1969), 739–740 | MR | Zbl

[3] K. B. Sabitov, “Zadacha Trikomi dlya uravneniya smeshannogo parabolo-giperbolicheskogo v pryamougolnoi oblasti”, Matem. zametki, 86:2 (2009), 273–279 | MR | Zbl

[4] N. I. Ionkin, “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 13:2 (1977), 294–304 | MR | Zbl