Nonlocal Problem for a Parabolic-Hyperbolic Equation in a Rectangular Domain
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 596-602
Cet article a éte moissonné depuis la source Math-Net.Ru
For an equation of mixed type, namely, $$ (1-\operatorname{sgn}t)u_{tt}+(1-\operatorname{sgn}t)u_{t}-2u_{xx}=0 $$ in the domain $\{(x,t)\mid0, where $\alpha$, $\beta$ are given positive real numbers, we study the problem with boundary conditions $$ u(0,t)=u(1,t)=0,\quad -\alpha\le t\le\beta,\qquad u(x,-\alpha)-u(x,\beta)=\varphi(x),\quad 0\le x\le1. $$ We establish a uniqueness criterion for the solution constructed as the sum of Fourier series. We establish the stability of the solution with respect to its nonlocal condition $\varphi(x)$.
Keywords:
parabolic-hyperbolic equation, Fourier series, initial boundary-value problem, differential equation, Weierstrass test.
Mots-clés : nonlocal condition
Mots-clés : nonlocal condition
@article{MZM_2011_89_4_a10,
author = {K. B. Sabitov},
title = {Nonlocal {Problem} for a {Parabolic-Hyperbolic} {Equation} in a {Rectangular} {Domain}},
journal = {Matemati\v{c}eskie zametki},
pages = {596--602},
year = {2011},
volume = {89},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a10/}
}
K. B. Sabitov. Nonlocal Problem for a Parabolic-Hyperbolic Equation in a Rectangular Domain. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 596-602. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a10/
[1] F. I. Frankl, “Obtekanie profilei potokom dozvukovoi skorosti so sverkhzvukovoi zonoi, okanchivayuscheisya pryamym skachkom ukloneniya”, PMM, 20:2 (1956), 196–202 | MR | Zbl
[2] A. V. Bitsadze, A. A. Samarskii, “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, Dokl. AN SSSR, 185 (1969), 739–740 | MR | Zbl
[3] K. B. Sabitov, “Zadacha Trikomi dlya uravneniya smeshannogo parabolo-giperbolicheskogo v pryamougolnoi oblasti”, Matem. zametki, 86:2 (2009), 273–279 | MR | Zbl
[4] N. I. Ionkin, “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 13:2 (1977), 294–304 | MR | Zbl