On Large Values of the Function $S(t)$ on Short Intervals
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 495-502
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove a theorem on upper and lower bounds for the argument $S(t)$ of the Riemann zeta function on short intervals of the critical line.
Keywords:
Riemann zeta function, prime number, Riemann hypothesis, Selberg's formula.
@article{MZM_2011_89_4_a1,
author = {R. N. Boyarinov},
title = {On {Large} {Values} of the {Function~}$S(t)$ on {Short} {Intervals}},
journal = {Matemati\v{c}eskie zametki},
pages = {495--502},
year = {2011},
volume = {89},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a1/}
}
R. N. Boyarinov. On Large Values of the Function $S(t)$ on Short Intervals. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 495-502. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a1/
[1] M. A. Korolëv, “O bolshikh znacheniyakh funktsii $S(t)$ na korotkikh promezhutkakh”, Izv. RAN. Ser. matem., 69:1 (2005), 115–124 | MR | Zbl
[2] E. Trost, Prostye chisla, Fizmatgiz, M., 1959 | MR | Zbl
[3] A. A. Karatsuba, M. A. Korolev, “Argument dzeta-funktsii Rimana”, UMN, 60:3 (2005), 41–96 | MR | Zbl