On Large Values of the Function~$S(t)$ on Short Intervals
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 495-502.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on upper and lower bounds for the argument $S(t)$ of the Riemann zeta function on short intervals of the critical line.
Keywords: Riemann zeta function, prime number, Riemann hypothesis, Selberg's formula.
@article{MZM_2011_89_4_a1,
     author = {R. N. Boyarinov},
     title = {On {Large} {Values} of the {Function~}$S(t)$ on {Short} {Intervals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {495--502},
     publisher = {mathdoc},
     volume = {89},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a1/}
}
TY  - JOUR
AU  - R. N. Boyarinov
TI  - On Large Values of the Function~$S(t)$ on Short Intervals
JO  - Matematičeskie zametki
PY  - 2011
SP  - 495
EP  - 502
VL  - 89
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a1/
LA  - ru
ID  - MZM_2011_89_4_a1
ER  - 
%0 Journal Article
%A R. N. Boyarinov
%T On Large Values of the Function~$S(t)$ on Short Intervals
%J Matematičeskie zametki
%D 2011
%P 495-502
%V 89
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a1/
%G ru
%F MZM_2011_89_4_a1
R. N. Boyarinov. On Large Values of the Function~$S(t)$ on Short Intervals. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 495-502. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a1/

[1] M. A. Korolëv, “O bolshikh znacheniyakh funktsii $S(t)$ na korotkikh promezhutkakh”, Izv. RAN. Ser. matem., 69:1 (2005), 115–124 | MR | Zbl

[2] E. Trost, Prostye chisla, Fizmatgiz, M., 1959 | MR | Zbl

[3] A. A. Karatsuba, M. A. Korolev, “Argument dzeta-funktsii Rimana”, UMN, 60:3 (2005), 41–96 | MR | Zbl