On Large Values of the Function~$S(t)$ on Short Intervals
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 495-502
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a theorem on upper and lower bounds for the argument $S(t)$ of the Riemann zeta function on short intervals of the critical line.
Keywords:
Riemann zeta function, prime number, Riemann hypothesis, Selberg's formula.
@article{MZM_2011_89_4_a1,
author = {R. N. Boyarinov},
title = {On {Large} {Values} of the {Function~}$S(t)$ on {Short} {Intervals}},
journal = {Matemati\v{c}eskie zametki},
pages = {495--502},
publisher = {mathdoc},
volume = {89},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a1/}
}
R. N. Boyarinov. On Large Values of the Function~$S(t)$ on Short Intervals. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 495-502. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a1/