Commutation of Projections and Trace Characterization on von~Neumann Algebras.~II
Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 483-494.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain new necessary and sufficient commutation conditions for projections in terms of operator inequalities. These inequalities are applied for trace characterization on von Neumann algebras for the class of all positive normal functionals.
Keywords: projection, von Neumann algebra, Hilbert space, trace, commutation of operators, normal functional, linear bounded operator, operator inequality.
@article{MZM_2011_89_4_a0,
     author = {A. M. Bikchentaev},
     title = {Commutation of {Projections} and {Trace} {Characterization} on {von~Neumann} {Algebras.~II}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--494},
     publisher = {mathdoc},
     volume = {89},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a0/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Commutation of Projections and Trace Characterization on von~Neumann Algebras.~II
JO  - Matematičeskie zametki
PY  - 2011
SP  - 483
EP  - 494
VL  - 89
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a0/
LA  - ru
ID  - MZM_2011_89_4_a0
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Commutation of Projections and Trace Characterization on von~Neumann Algebras.~II
%J Matematičeskie zametki
%D 2011
%P 483-494
%V 89
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a0/
%G ru
%F MZM_2011_89_4_a0
A. M. Bikchentaev. Commutation of Projections and Trace Characterization on von~Neumann Algebras.~II. Matematičeskie zametki, Tome 89 (2011) no. 4, pp. 483-494. http://geodesic.mathdoc.fr/item/MZM_2011_89_4_a0/

[1] A. N. Sherstnev, Metody bilineinykh form v nekommutativnoi teorii mery i integrala, Fizmatlit, M., 2008 | Zbl

[2] A. M. Bikchentaev, “O predstavlenii elementov algebry fon Neimana v vide konechnykh summ proizvedenii proektorov. III. Kommutatory v $C^*$-algebrakh”, Matem. sb., 199:4 (2008), 3–20 | MR | Zbl

[3] A. M. Bikchentaev, “Perestanovochnost proektorov i kharakterizatsiya sleda na algebrakh fon Neimana. I”, Izv. vuzov. Matem., 2009, no. 12, 80–83 | MR | Zbl

[4] L. T. Gardner, “An inequality characterizes the trace”, Canad. J. Math., 31:6 (1979), 1322–1328 | DOI | MR | Zbl

[5] O. E. Tikhonov, “Subadditivity inequalities in von Neumann algebras and characterization of tracial functionals”, Positivity, 9:2 (2005), 259–264 | DOI | MR | Zbl

[6] A. M. Bikchentaev, O. E. Tikhonov, “Characterization of the trace by Young's inequality”, JIPAM. J. Inequal. Pure Appl. Math., 6:2 (2005), Article 49 | MR | Zbl

[7] A. M. Bikchentaev, O. E. Tikhonov, “Characterization of the trace by monotonicity inequalities”, Linear Algebra Appl., 422:1 (2007), 274–278 | DOI | MR | Zbl

[8] A. M. Bikchentaev, “Ob odnom svoistve $L_p$-prostranstv na polukonechnykh algebrakh fon Neimana”, Matem. zametki, 64:2 (1998), 185–190 | MR | Zbl

[9] G. K. Pedersen, E. Størmer, “Traces on Jordan algebras”, Canad. J. Math., 34:2 (1982), 370–373 | DOI | MR | Zbl

[10] M. Takesaki, Theory of Operator Algebras. II, Encyclopaedia Math. Sci., 125, Operator algebras and noncommutative geometry, 6, Springer-Verlag, Berlin, 2003 | MR | Zbl

[11] M. B. Ruskai, “Inequalities for traces on von Neumann algebras”, Comm. Math. Phys., 26:4 (1972), 280–289 | DOI | MR | Zbl

[12] S. M. Manjegani, Inequalities in Operator Algebras, Ph.D. Thesis, The University of Regina, Regina, Canada, 2004 | MR

[13] M. Takesaki, Theory of Operator Algebras. I, Springer-Verlag, New York, 1979 | MR | Zbl

[14] S. Sakai, $C^*$-algebras and $W^*$-algebras, Ergeb. Math. Grenzgeb., 60, Springer-Verlag, New York, 1971 | MR | Zbl

[15] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR | Zbl

[16] D. Deckard, C. Pearcy, “On matrices over the ring of continuous complex valued functions on a Stonian space”, Proc. Amer. Math. Soc., 14:2 (1963), 322–328 | DOI | MR | Zbl

[17] C. A. Akemann, J. Anderson, G. K. Pedersen, “Triangle inequalities in operator algebras”, Linear and Multilinear Algebra, 11:2 (1982), 167–178 | DOI | MR | Zbl

[18] O. E. Tikhonov, “Vypuklye funktsii i neravenstva dlya sleda”, Konstruktivnaya teoriya funktsii i funktsionalnyi analiz, Vyp. 6, Izd-vo Kazansk. un-ta, Kazan, 1987, 77–82 | MR | Zbl