New Iterations with Errors for Approximating Common Fixed Points for two Generalized Asymptotically Quasi-Nonexpansive Nonself-Mappings
Matematičeskie zametki, Tome 89 (2011) no. 3, pp. 410-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a real uniformly convex Banach space and $C$ a nonempty closed convex nonexpansive retract of $X$ with $P$ as a nonexpansive retraction. Let $T_1,T_2\colon C \to X$ be two uniformly $L$-Lipschitzian, generalized asymptotically quasi-nonexpansive non-self-mappings of $C$ satisfying condition $A'$ with sequences $\{k_n^{(i)}\}$ and $\{\delta_n^{(i)}\} \subset [1,\infty)$, $i=1,2$, respectively such that $\sum_{n=1}^{\infty} (k_n^{(i)} -1) \infty$, $\sum_{n=1}^{\infty} \delta_n^{(i)} \infty$, and $F=F(T_1)\cap F(T_2)\ne \varnothing$. For an arbitrary $x_1 \in C$, let $\{x_n\}$ be the sequence in $C$ defined by \begin{align*} y_n=P((1-\beta_n-\gamma_n)x_n+\beta_nT_{2}(PT_{2})^{n-1}x_n+\gamma_n v_n), \\ x_{n+1}=P((1-\alpha_n-\lambda_n )y_n+\alpha_nT_{1}(PT_{1})^{n-1}x_n+\lambda_n u_n),\qquad n \ge 1, \end{align*} where $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$, and $\{\lambda_n\}$ are appropriate real sequences in $[0,1)$ such that $\sum_{n=1}^{\infty} \gamma_n \infty$, $\sum_{n=1}^{\infty}\lambda_n \infty$, and $\{u_n\}$, $\{v_n\}$ are bounded sequences in $C$. Then $\{x_n\}$ and $\{y_n\}$ converge strongly to a common fixed point of $T_1$ and $T_2$ under suitable conditions.
Keywords: asymptotically quasi-nonexpansive non-self-mapping, normed linear space, uniformly $L$-Lipschitzian mapping, strong convergence, common fixed points.
@article{MZM_2011_89_3_a9,
     author = {S. Thianwan},
     title = {New {Iterations} with {Errors} for {Approximating} {Common} {Fixed} {Points} for two {Generalized} {Asymptotically} {Quasi-Nonexpansive} {Nonself-Mappings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {410--423},
     publisher = {mathdoc},
     volume = {89},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a9/}
}
TY  - JOUR
AU  - S. Thianwan
TI  - New Iterations with Errors for Approximating Common Fixed Points for two Generalized Asymptotically Quasi-Nonexpansive Nonself-Mappings
JO  - Matematičeskie zametki
PY  - 2011
SP  - 410
EP  - 423
VL  - 89
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a9/
LA  - ru
ID  - MZM_2011_89_3_a9
ER  - 
%0 Journal Article
%A S. Thianwan
%T New Iterations with Errors for Approximating Common Fixed Points for two Generalized Asymptotically Quasi-Nonexpansive Nonself-Mappings
%J Matematičeskie zametki
%D 2011
%P 410-423
%V 89
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a9/
%G ru
%F MZM_2011_89_3_a9
S. Thianwan. New Iterations with Errors for Approximating Common Fixed Points for two Generalized Asymptotically Quasi-Nonexpansive Nonself-Mappings. Matematičeskie zametki, Tome 89 (2011) no. 3, pp. 410-423. http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a9/

[1] N. Shahzad, H. Zegeye, “Strong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive maps”, Appl. Math. Comput., 189:2 (2007), 1058–1065 | DOI | MR | Zbl

[2] S. Ishikawa, “Fixed points and iteration of a nonexpansive mapping in a Banach space”, Proc. Amer. Math. Soc., 59:1 (1976), 65–71 | MR | Zbl

[3] S. H. Khan, H. Fukhar-ud-din, “Weak and strong convergence of a scheme with errors for two nonexpansive mappings”, Nonlinear Anal., 61:8 (2005), 1295–1301 | DOI | MR | Zbl

[4] M. O. Osilike, S. C. Aniagbosor, “Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings”, Math. Comput. Modelling, 32:10 (2000), 1181–1191 | DOI | MR | Zbl

[5] J. Schu, “Iterative construction of fixed points of asymptotically nonexpansive mappings”, J. Math. Anal. Appl., 158:2 (1991), 407–413 | DOI | MR | Zbl

[6] J. S. Jung, S. S. Kim, “Strong convergence theorems for nonexpansive nonself-mappings in Banach spaces”, Nonlinear Anal., 33:3 (1998), 321–329 | DOI | MR | Zbl

[7] S. Matsushita, D. Kuroiwa, “Strong convergence of averaging iterations of nonexpansive nonself-mappings”, J. Math. Anal. Appl., 294:1 (2004), 206–214 | DOI | MR | Zbl

[8] N. Shahzad, “Approximating fixed points of non-self nonexpansive mappings in Banach spaces”, Nonlinear Anal., 61:6 (2005), 1031–1039 | DOI | MR | Zbl

[9] W. Takahashi, G.-E. Kim, “Strong convergence of approximants to fixed points of nonexpansive nonself-mappings in Banach spaces”, Nonlinear Anal., 32:3 (1998), 447–454 | DOI | MR | Zbl

[10] H.-K. Xu, X.-M. Yin, “Strong convergence theorems for nonexpansive nonself-mappings”, Nonlinear Anal., 24:2 (1995), 223–228 | DOI | MR | Zbl

[11] K. Goebel, W. A. Kirk, “A fixed point theorem for asymptotically nonexpansive mappings”, Proc. Amer. Math. Soc., 35 (1972), 171–174 | DOI | MR | Zbl

[12] C. E. Chidume, “Iterative algorithms for nonexpansive mappings and some of their generalizations”, Nonlinear Analysis and Applications, To V. Lakshmikantham on his 80th birthday, v. 1, Kluwer Acad. Publ., Dordrecht, 2003, 383–429 | MR | Zbl

[13] C. E. Chidume, B. Ali, “Convergence theorems for finite families of asymptotically quasi-nonexpansive mappings”, J. Inequal. Appl., 2007 (2007), Article ID 68616 | DOI | MR | Zbl

[14] Y. J. Cho, H. Zhou, G. Guo, “Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings”, Comput. Math. Appl., 47:4-5 (2004), 707–717 | DOI | MR | Zbl

[15] X. Qin, Y. Su, M. Shang, “Strong convergence for three classes of uniformly equi-continuous and asymptotically quasi-nonexpansive mappings”, J. Korean Math. Soc., 45:1 (2008), 29–40 | DOI | MR | Zbl

[16] J. Quan, S.-S. Chang, X. J. Long, “Approximation common fixed point of asymptotically quasi-nonexpansive-type mappings by the finite steps iterative sequences”, Fixed Point Theory Appl., 2006 (2006), Article ID 70830 | DOI | MR | Zbl

[17] B. E. Rhoades, “Fixed point iterations for certain nonlinear mappings”, J. Math. Anal. Appl., 183:1 (1994), 118–120 | DOI | MR | Zbl

[18] J. Schu, “Weak and strong convergence to fixed points of asymptotically nonexpansive mappings”, Bull. Austral. Math. Soc., 43:1 (1991), 153–159 | DOI | MR | Zbl

[19] N. Shahzad, A. Udomene, “Approximating common fixed points of two asymptotically quasi-nonexpansive mappings in Banach spaces”, Fixed Point Theory Appl., 2006 (2006), Article ID 18909 | DOI | MR | Zbl

[20] K.-K. Tan, H. K. Xu, “Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process”, J. Math. Anal. Appl., 178:2 (1993), 301–308 | DOI | MR | Zbl

[21] S. Reich, “Weak convergence theorems for nonexpansive mappings in Banach spaces”, J. Math. Anal. Appl., 67:2 (1979), 274–276 | DOI | MR | Zbl

[22] C. E. Chidume, E. U. Ofoedu, H. Zegeye, “Strong and weak convergence theorems for asymptotically nonexpansive mappings”, J. Math. Anal. Appl., 280:2 (2003), 364–374 | DOI | MR | Zbl

[23] L. Wang, “Strong and weak convergence theorems for common fixed point of nonself asymptotically nonexpansive mappings”, J. Math. Anal. Appl., 323:1 (2006), 550–557 | DOI | MR | Zbl

[24] L. Deng, Q. Liu, “Iterative scheme for nonself generalized asymptotically quasi-nonexpansive mappings”, Appl. Math. Comput., 205:1 (2008), 317–324 | DOI | MR | Zbl

[25] S. Thianwan, “New iterations for approximation of common fixed points of two asymptotically nonexpansive nonself-mappings”, Lobachevskii J. Math., 30:1 (2009), 89–95 | DOI | MR | Zbl

[26] H. Fukhar-ud-din, S. H. Khan, “Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications”, J. Math. Anal. Appl., 328:2 (2007), 821–829 | DOI | MR | Zbl

[27] M. Maiti, M. K. Ghosh, “Approximating fixed points by Ishikawa iterates”, Bull. Austral. Math. Soc., 40:1 (1989), 113–117 | DOI | MR | Zbl