On a Class of Lattice Semigroup Functors
Matematičeskie zametki, Tome 89 (2011) no. 3, pp. 355-364.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, continuum many natural transitive lattice subgroup functors corresponding to no hereditary lattice formation are constructed on the class of all finite groups. This result is an answer to Question 15.39 in “The Kourovka Notebook”, which was posed by the author and A. F. Vasilev in connection with their theorem claiming that, on the class of all solvable groups, all functors of this kind correspond to hereditary local lattice formations.
Keywords: lattice of all subgroups of a group, hereditary lattice formation, natural transitive lattice semigroup functor, subgroup functor, NLT functor.
Mots-clés : solvable group
@article{MZM_2011_89_3_a4,
     author = {S. F. Kamornikov},
     title = {On a {Class} of {Lattice} {Semigroup} {Functors}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {355--364},
     publisher = {mathdoc},
     volume = {89},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a4/}
}
TY  - JOUR
AU  - S. F. Kamornikov
TI  - On a Class of Lattice Semigroup Functors
JO  - Matematičeskie zametki
PY  - 2011
SP  - 355
EP  - 364
VL  - 89
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a4/
LA  - ru
ID  - MZM_2011_89_3_a4
ER  - 
%0 Journal Article
%A S. F. Kamornikov
%T On a Class of Lattice Semigroup Functors
%J Matematičeskie zametki
%D 2011
%P 355-364
%V 89
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a4/
%G ru
%F MZM_2011_89_3_a4
S. F. Kamornikov. On a Class of Lattice Semigroup Functors. Matematičeskie zametki, Tome 89 (2011) no. 3, pp. 355-364. http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a4/

[1] H. Wielandt, “Eine Verallgemeinerung der invarianten Untergruppen”, Math. Z., 45:1 (1939), 209–244 | DOI | MR | Zbl

[2] O. H. Kegel, “Untergruppenverbände endlicher Gruppen, die den Subnormalteilerverband echt enthalten”, Arch. Math. (Basel), 30:3 (1978), 225–228 | DOI | MR | Zbl

[3] L. A. Shemetkov, Formatsii konechnykh grupp, Sovremennaya algebra, Nauka, M., 1978 | MR | Zbl

[4] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 16-e izd., dop., In-t matem. SO RAN, Novosibirsk, 2006

[5] A. F. Vasilev, S. F. Kamornikov, V. N. Semenchuk, “O reshetkakh podgrupp konechnykh grupp”, Beskonechnye gruppy i primykayuschie algebraicheskie sistemy, In-t matem. AN Ukrainy, Kiev, 1993, 27–54 | MR | Zbl

[6] A. Ballester-Bolinches, K. Doerk, M. D. Pérez-Ramos, “On the lattice of $\mathfrak F$-subnormal subgroups”, J. Algebra, 148:1 (1992), 42–52 | DOI | MR | Zbl

[7] A. F. Vasilev, S. F. Kamornikov, “O funktornom metode izucheniya reshetok podgrupp konechnykh grupp”, Sib. matem. zhurn., 42:1 (2001), 30–40 | MR | Zbl

[8] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belorusskaya nauka, Minsk, 2003

[9] K. Doerk, T. Hawkes, Finite Soluble Groups, de Gruyter Expositions in Math., 4, Walter de Gruyter, Berlin, 1992 | MR | Zbl

[10] R. Carter, T. Hawkes, “The $\mathfrak F$-normalizers of a finite soluble group”, J. Algebra, 5:2 (1967), 175–202 | DOI | MR | Zbl

[11] H. Wielandt, “Über den Normalisator der subnormalen Untergruppen”, Math. Z., 69 (1958), 463–465 | DOI | MR | Zbl

[12] V. S. Monakhov, “Klassy konechnykh grupp s izoordnymi biektorami”, Voprosy algebry, 1987, no. 3, 76–78 | MR | Zbl