On Annihilators of Polynomial Near-Rings
Matematičeskie zametki, Tome 89 (2011) no. 3, pp. 342-349.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring and let $R_0[x]$ be the polynomial near-ring over $R$. We study relations between the set of annihilators in $R$ and the set of annihilators in $R_0[x]$.
Keywords: polynomial near-ring over a ring, near-Armendariz ring, quasi-near-Armendariz ring, quasi-Baer annihilator, idempotent, reduced ring.
@article{MZM_2011_89_3_a2,
     author = {Sh. Ghalandarzadeh and P. Malakooti Rad and S. Shirinkam},
     title = {On {Annihilators} of {Polynomial} {Near-Rings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {342--349},
     publisher = {mathdoc},
     volume = {89},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a2/}
}
TY  - JOUR
AU  - Sh. Ghalandarzadeh
AU  - P. Malakooti Rad
AU  - S. Shirinkam
TI  - On Annihilators of Polynomial Near-Rings
JO  - Matematičeskie zametki
PY  - 2011
SP  - 342
EP  - 349
VL  - 89
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a2/
LA  - ru
ID  - MZM_2011_89_3_a2
ER  - 
%0 Journal Article
%A Sh. Ghalandarzadeh
%A P. Malakooti Rad
%A S. Shirinkam
%T On Annihilators of Polynomial Near-Rings
%J Matematičeskie zametki
%D 2011
%P 342-349
%V 89
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a2/
%G ru
%F MZM_2011_89_3_a2
Sh. Ghalandarzadeh; P. Malakooti Rad; S. Shirinkam. On Annihilators of Polynomial Near-Rings. Matematičeskie zametki, Tome 89 (2011) no. 3, pp. 342-349. http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a2/

[1] G. F. Birkenmeier, Feng-kuo Huang, “Annihilator conditions on polynomials”, Comm. Algebra, 29:5 (2001), 2097–2112 | DOI | MR | Zbl

[2] G. F. Birkenmeier, Feng-kuo Huang, “Annihilator conditions on polynomials. II”, Monatsh. Math., 141:4 (2004), 265–276 | DOI | MR | Zbl

[3] Y. Hirano, “On annihilator ideals of a polynomial ring over a noncommutative ring”, J. Pure Appl. Algebra, 168:1 (2002), 45–52 | DOI | MR | Zbl

[4] H. Tominaga, “On $s$-unital rings”, Math. J. Okayama Univ., 18:2 (1976), 117–134 | MR | Zbl

[5] B. Stenström, Rings of Quotients. An Introduction to Methods of Ring Theory, Grundlehren Math. Wiss., 217, Springer-Verlag, Berlin, 1975 | MR | Zbl

[6] G. Marks, “A taxonomy of $2$-primal rings”, J. Algebra, 266:2 (2003), 494–520 | DOI | MR | Zbl

[7] A. Pollingher, A. Zaks, “On Baer and quasi-Baer rings”, Duke Math. J., 37:1 (1970), 127–138 | DOI | MR | Zbl