Inverse Problem for Sturm--Liouville Operators on Hedgehog-Type Graphs
Matematičeskie zametki, Tome 89 (2011) no. 3, pp. 459-471.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the inverse spectral problem for Sturm–Liouville differential operators on hedgehog-type graphs with a cycle and with standard sewing conditions at interior vertices. We prove a uniqueness theorem and obtain a constructive solution for this class of inverse problems.
Keywords: Sturm–Liouville differential operator, inverse spectral problem, hedgehog-type graph, Weyl function, boundary-value problem.
@article{MZM_2011_89_3_a12,
     author = {V. A. Yurko},
     title = {Inverse {Problem} for {Sturm--Liouville} {Operators} on {Hedgehog-Type} {Graphs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {459--471},
     publisher = {mathdoc},
     volume = {89},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a12/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - Inverse Problem for Sturm--Liouville Operators on Hedgehog-Type Graphs
JO  - Matematičeskie zametki
PY  - 2011
SP  - 459
EP  - 471
VL  - 89
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a12/
LA  - ru
ID  - MZM_2011_89_3_a12
ER  - 
%0 Journal Article
%A V. A. Yurko
%T Inverse Problem for Sturm--Liouville Operators on Hedgehog-Type Graphs
%J Matematičeskie zametki
%D 2011
%P 459-471
%V 89
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a12/
%G ru
%F MZM_2011_89_3_a12
V. A. Yurko. Inverse Problem for Sturm--Liouville Operators on Hedgehog-Type Graphs. Matematičeskie zametki, Tome 89 (2011) no. 3, pp. 459-471. http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a12/

[1] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl

[2] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl

[3] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Pure Appl. Math., 130, Academic Press, Boston, MA, 1987 | MR | Zbl

[4] G. Freiling, V. Yurko, Inverse Sturm–Liouville Problems and their Applications, Nova Sci. Publ., Huntington, NY, 2001 | MR | Zbl

[5] R. Beals, P. Deift, C. Tomei, Direct and Inverse Scattering on the Line, Math. Surveys Monogr., 28, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[6] V. A. Yurko, Inverse Spectral Problems for Differential Operators and their Applications, Gordon and Breach Sci. Publ., Amsterdam, 2000 | MR | Zbl

[7] V. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2002 | MR | Zbl

[8] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl

[9] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | MR | Zbl

[10] A. V. Borovskikh, Yu. V. Pokornyi, Differentsialnye uravneniya na setyakh (geometricheskikh grafakh), Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 106, VINITI, M., 2002

[11] Yu. V. Pokornyi, V. L. Pryadiev, “Nekotorye voprosy kachestvennoi teorii Shturma–Liuvillya na prostranstvennoi seti”, UMN, 59:3 (2004), 115–150 | MR | Zbl

[12] M. I. Belishev, “Boundary spectral inverse problem on a class of graphs (trees) by the BC method”, Inverse Problems, 20:3 (2004), 647–672 | DOI | MR | Zbl

[13] V. Yurko, “Inverse spectral problems for Sturm–Liouville operators on graphs”, Inverse Problems, 21:3 (2005), 1075–1086 | DOI | MR | Zbl

[14] B. M. Brown, R. Weikard, “A Borg–Levinson theorem for trees”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2062 (2005), 3231–3243 | DOI | MR | Zbl

[15] G. Freiling, V. Yurko, “Inverse problems for Sturm–Liouville operators on noncompact trees”, Results Math., 50:3-4 (2007), 195–212 | DOI | MR | Zbl

[16] V. A. Yurko, “Obratnye zadachi dlya differentsialnykh operatorov proizvolnykh poryadkov na derevyakh”, Matem. zametki, 83:1 (2008), 139–152 | MR | Zbl

[17] V. A. Yurko, “Obratnaya spektralnaya zadacha dlya puchkov differentsialnykh operatorov na nekompaktnykh prostranstvennykh setyakh”, Differents. uravneniya, 44:12 (2008), 1658–1666 | MR | Zbl

[18] V. A. Yurko, “Vosstanovlenie differentsialnykh operatorov na grafe s tsiklom i s obobschennymi usloviyami skleiki”, Izv. Saratovsk. un-ta (Nov. ser.). Ser. matem., mekh., inform., 8:3 (2008), 10–17

[19] V. A. Yurko, “Inverse problems for Sturm-Liouville operators on graphs with a cycle”, Oper. Matrices, 2:4 (2008), 543–553 | MR | Zbl

[20] V. A. Yurko, “Vosstanovlenie differentsialnykh operatorov po spektram na grafe s tsiklom”, Sovremennye metody teorii funktsii i smezhnye voprosy, VGU, Voronezh, 2009, 196–197

[21] A. M. Denisov, Elements of the Theory of Inverse Problems, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 1999 | MR | Zbl

[22] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Monogr. Textbooks Pure Appl. Math., 231, Marcel Dekker, New York, 2000 | MR | Zbl

[23] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR | Zbl

[24] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[25] R. Bellmann, K. L. Cooke, Differential–difference equations, Math. Sci. Engrg., 6, Academic Press, New York, 1963 | MR | Zbl

[26] J. B. Conway, Functions of one complex variable. II, Grad. Texts in Math., 159, Springer-Verlag, New York, 1995 | MR | Zbl

[27] I. V. Stankevich, “Ob odnoi obratnoi zadache spektralnogo analiza dlya uravneniya Khilla”, Dokl. AN SSSR, 192:1 (1970), 34–37 | MR | Zbl

[28] V. A. Marchenko, I. V. Ostrovskii, “Kharakteristika spektra operatora Khilla”, Matem. sb., 97:4 (1975), 540–606 | MR | Zbl

[29] V. Yurko, “Inverse problems for Sturm–Liouville operators on bush-type graphs”, Inverse Problems, 25:10 (2009), 105008 | DOI | MR | Zbl

[30] V. Yurko, “An inverse problem for Sturm–Liouville operators on A-graphs”, Appl. Math. Lett., 23:8 (2010), 875–879 | DOI | MR | Zbl

[31] V. A. Yurko, “Inverse spectral problems for differential operators on arbitrary compact graphs”, J. Inverse Ill-Posed Probl., 18:3 (2010), 245–261 | DOI | MR