Generalization of the Multiplicative Fourier Transform and Its Properties
Matematičeskie zametki, Tome 89 (2011) no. 3, pp. 323-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a new class of functions on the semiaxis for which the multiplicative Fourier transform can be defined. We prove equalities of Parseval type, an inversion formula and a condition for the validity of representation in the form of the multiplicative Fourier transform.
Mots-clés : multiplicative Fourier transform
Keywords: Parseval equality, Dirichlet kernel, Fubini's theorem, Riesz–Torin theorem, dominated convergence.
@article{MZM_2011_89_3_a0,
     author = {S. S. Volosivets},
     title = {Generalization of the {Multiplicative} {Fourier} {Transform} and {Its} {Properties}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--330},
     publisher = {mathdoc},
     volume = {89},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a0/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Generalization of the Multiplicative Fourier Transform and Its Properties
JO  - Matematičeskie zametki
PY  - 2011
SP  - 323
EP  - 330
VL  - 89
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a0/
LA  - ru
ID  - MZM_2011_89_3_a0
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Generalization of the Multiplicative Fourier Transform and Its Properties
%J Matematičeskie zametki
%D 2011
%P 323-330
%V 89
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a0/
%G ru
%F MZM_2011_89_3_a0
S. S. Volosivets. Generalization of the Multiplicative Fourier Transform and Its Properties. Matematičeskie zametki, Tome 89 (2011) no. 3, pp. 323-330. http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a0/

[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[2] A. C. Offord, “On Fourier transforms. III”, Trans. Amer. Math. Soc., 38:2 (1935), 250–266 | MR | Zbl

[3] M. S. Bespalov, Multiplikativnye preobrazovaniya Fure v $L^p$, Dep. v VINITI No 100-82, M., 1981

[4] E. Titchmarsh, Vvedenie v teoriyu integralov Fure, Gostekhizdat, M., 1948 | MR | Zbl