Generalization of the Multiplicative Fourier Transform and Its Properties
Matematičeskie zametki, Tome 89 (2011) no. 3, pp. 323-330
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a new class of functions on the semiaxis for which the multiplicative Fourier transform can be defined. We prove equalities of Parseval type, an inversion formula and a condition for the validity of representation in the form of the multiplicative Fourier transform.
Mots-clés :
multiplicative Fourier transform
Keywords: Parseval equality, Dirichlet kernel, Fubini's theorem, Riesz–Torin theorem, dominated convergence.
Keywords: Parseval equality, Dirichlet kernel, Fubini's theorem, Riesz–Torin theorem, dominated convergence.
@article{MZM_2011_89_3_a0,
author = {S. S. Volosivets},
title = {Generalization of the {Multiplicative} {Fourier} {Transform} and {Its} {Properties}},
journal = {Matemati\v{c}eskie zametki},
pages = {323--330},
year = {2011},
volume = {89},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a0/}
}
S. S. Volosivets. Generalization of the Multiplicative Fourier Transform and Its Properties. Matematičeskie zametki, Tome 89 (2011) no. 3, pp. 323-330. http://geodesic.mathdoc.fr/item/MZM_2011_89_3_a0/
[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl
[2] A. C. Offord, “On Fourier transforms. III”, Trans. Amer. Math. Soc., 38:2 (1935), 250–266 | MR | Zbl
[3] M. S. Bespalov, Multiplikativnye preobrazovaniya Fure v $L^p$, Dep. v VINITI No 100-82, M., 1981
[4] E. Titchmarsh, Vvedenie v teoriyu integralov Fure, Gostekhizdat, M., 1948 | MR | Zbl