Mathematical Solution of the Gibbs Paradox
Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 272-284

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct a new distribution corresponding to a real noble gas as well as the equation of state for it.
Keywords: Zeno line, partitio numerorum, cluster, critical temperature, Boyle temperature, jamming effect, Bose–Einstein distribution, Gibbs paradox.
Mots-clés : phase transition, dimer
@article{MZM_2011_89_2_a9,
     author = {V. P. Maslov},
     title = {Mathematical {Solution} of the {Gibbs} {Paradox}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {272--284},
     publisher = {mathdoc},
     volume = {89},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a9/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Mathematical Solution of the Gibbs Paradox
JO  - Matematičeskie zametki
PY  - 2011
SP  - 272
EP  - 284
VL  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a9/
LA  - ru
ID  - MZM_2011_89_2_a9
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Mathematical Solution of the Gibbs Paradox
%J Matematičeskie zametki
%D 2011
%P 272-284
%V 89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a9/
%G ru
%F MZM_2011_89_2_a9
V. P. Maslov. Mathematical Solution of the Gibbs Paradox. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 272-284. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a9/