Mathematical Solution of the Gibbs Paradox
Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 272-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct a new distribution corresponding to a real noble gas as well as the equation of state for it.
Keywords: Zeno line, partitio numerorum, cluster, critical temperature, Boyle temperature, jamming effect, Bose–Einstein distribution, Gibbs paradox.
Mots-clés : phase transition, dimer
@article{MZM_2011_89_2_a9,
     author = {V. P. Maslov},
     title = {Mathematical {Solution} of the {Gibbs} {Paradox}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {272--284},
     publisher = {mathdoc},
     volume = {89},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a9/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Mathematical Solution of the Gibbs Paradox
JO  - Matematičeskie zametki
PY  - 2011
SP  - 272
EP  - 284
VL  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a9/
LA  - ru
ID  - MZM_2011_89_2_a9
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Mathematical Solution of the Gibbs Paradox
%J Matematičeskie zametki
%D 2011
%P 272-284
%V 89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a9/
%G ru
%F MZM_2011_89_2_a9
V. P. Maslov. Mathematical Solution of the Gibbs Paradox. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 272-284. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a9/

[1] V. V. Kozlov, “Kinetika besstolknovitelnogo gaza: vyravnivanie temperatury, vozrastanie gruboi entropii i paradoks Gibbsa”, Nelineinaya dinamika, 5:3 (2009), 377–383

[2] A. Puakare, O nauke, M., Nauka, 1983 | MR | Zbl

[3] A. M. Vershik, “Statisticheskaya mekhanika kombinatornykh razbienii i ikh predelnye konfiguratsii”, Funkts. analiz i ego pril., 30:2 (1996), 19–39 | MR | Zbl

[4] Yu. I. Manin, The notion of dimension in geometry and algebra, arXiv: math.AG/0502016

[5] P. Erdős, “On some asymptotic formulas in the theory of partitions”, Bull. Amer. Math. Soc., 52 (1946), 185–188 | DOI | MR | Zbl

[6] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh dvumya lineinymi sootnosheniyami”, Matem. zametki, 84:1 (2008), 69–98 | MR

[7] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 5, Statisticheskaya fizika, Nauka, M., 1964 | MR | Zbl

[8] V. P. Maslov, “Threshold levels in economics and time series”, Math. Notes, 85:3-4 (2009), 305–321 | DOI | Zbl

[9] V. P. Maslov, “Bose distribution without Bose condensate. Dependence of the chemical potential on the fractal dimension”, Math. Notes, 89:1 (2011), 93–97

[10] E. M. Apfelbaum, V. S. Vorob'ev, “Correspindence between the critical and the Zeno-line parameters for classical and quantum liquids”, J. Phys. Chem. B, 113:11 (2009), 3521–3526 | DOI

[11] E. M. Apfelbaum, V. S. Vorob'ev, G. A. Martynov, “Triangle of liquid-gas states”, J. Phys. Chem. B, 110:16 (2006), 8474–8480 | DOI