Estimates of the Number of Relative Minima of Lattices
Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 249-259

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an estimate of the number of relative minima of an arbitrary lattice (which can be noninteger and incomplete) located in a given cube. This estimate is correct up to a constant depending on the dimension and rank.
Keywords: $s$-dimensional lattice, minimum of a lattice, rank of a lattice, continued fraction, Klein polyhedron.
Mots-clés : convergent
@article{MZM_2011_89_2_a7,
     author = {A. A. Illarionov},
     title = {Estimates of the {Number} of {Relative} {Minima} of {Lattices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {249--259},
     publisher = {mathdoc},
     volume = {89},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a7/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - Estimates of the Number of Relative Minima of Lattices
JO  - Matematičeskie zametki
PY  - 2011
SP  - 249
EP  - 259
VL  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a7/
LA  - ru
ID  - MZM_2011_89_2_a7
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T Estimates of the Number of Relative Minima of Lattices
%J Matematičeskie zametki
%D 2011
%P 249-259
%V 89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a7/
%G ru
%F MZM_2011_89_2_a7
A. A. Illarionov. Estimates of the Number of Relative Minima of Lattices. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 249-259. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a7/