Estimates of the Number of Relative Minima of Lattices
Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 249-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an estimate of the number of relative minima of an arbitrary lattice (which can be noninteger and incomplete) located in a given cube. This estimate is correct up to a constant depending on the dimension and rank.
Keywords: $s$-dimensional lattice, minimum of a lattice, rank of a lattice, continued fraction, Klein polyhedron.
Mots-clés : convergent
@article{MZM_2011_89_2_a7,
     author = {A. A. Illarionov},
     title = {Estimates of the {Number} of {Relative} {Minima} of {Lattices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {249--259},
     publisher = {mathdoc},
     volume = {89},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a7/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - Estimates of the Number of Relative Minima of Lattices
JO  - Matematičeskie zametki
PY  - 2011
SP  - 249
EP  - 259
VL  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a7/
LA  - ru
ID  - MZM_2011_89_2_a7
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T Estimates of the Number of Relative Minima of Lattices
%J Matematičeskie zametki
%D 2011
%P 249-259
%V 89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a7/
%G ru
%F MZM_2011_89_2_a7
A. A. Illarionov. Estimates of the Number of Relative Minima of Lattices. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 249-259. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a7/

[1] A. Ya. Khinchin, Tsepnye drobi, Fizmatgiz, M., 1961 | MR | Zbl

[2] F. Klein, “Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwickelung”, Gött. Nachr., 1895, no. 3, 357–359 | Zbl

[3] G. F. Voronoi, Sobranie sochinenii, V 3-kh t., v. 1, Izd-vo AN USSR, Kiev, 1952 | MR | Zbl

[4] H. Minkowski, “Généralisation de la théorie des fractions continues”, Ann. Sci. Ècole Norm. Sup. (3), 13:2 (1896), 41–60 | MR | Zbl

[5] Dzh. V. S. Kassels, Vvedenie v geometriyu chisel, Mir, M., 1995 | MR | Zbl

[6] V. A. Bykovskii, “Otnositelnye minimumy reshetok i vershiny mnogogrannikov Kleina”, Funkts. analiz i ego pril., 40:1 (2006), 69–71 | MR | Zbl

[7] V. A. Bykovskii, “O pogreshnosti teoretiko-chislovykh kvadraturnykh formul”, Dokl. RAN, 389:2 (2003), 154–155 | MR | Zbl

[8] V. A. Bykovskii, “O pogreshnosti teoretiko-chislovykh kvadraturnykh formul”, Chebyshevskii sb., 3:2 (2002), 27–33 | MR | Zbl

[9] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, MTsNMO, M., 2004 | MR | Zbl

[10] M. O. Avdeeva, “Otsenka kolichestva lokalnykh minimumov tselochislennykh reshetok”, Chebyshevskii sb., 5:4 (2004), 35–38 | MR | Zbl

[11] O. A. Gorkusha, N. M. Dobrovolskii, “Ob otsenkakh giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevskii sb., 6:2 (2005), 129–137 | MR | Zbl

[12] A. A. Illarionov, “Otsenka kolichestva otnositelnykh minimumov nepolnykh tselochislennykh reshetok”, Chebyshevskii sb., 7:4 (2006), 92–98 | MR | Zbl

[13] A. A. Illarionov, “Otsenka kolichestva otnositelnykh minimumov nepolnykh tselochislennykh reshetok proizvolnogo ranga”, Dokl. RAN, 418:2 (2007), 155–158 | MR

[14] M. O. Avdeeva, “O nizhnikh otsenkakh kolichestva lokalnykh minimumov tselochislennykh reshetok”, Fundament. i prikl. matem., 11:6 (2005), 9–14 | MR | Zbl

[15] O. A. Gorkusha, “Kriterii konechnosti mnozhestva lokalnykh minimumov reshetki”, Chebyshevskii sb., 5:3 (2004), 15–17 | MR | Zbl

[16] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1972 | MR | Zbl