On the Spectral Properties of Differential Operators with Unbounded Operator Coefficients Determined by a Linear Relation
Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 226-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for the invertibility and the Fredholm property of operators generated by a family of evolution operators and by the boundary conditions determined by a linear relation are obtained.
Keywords: linear relation, invertibility, Fredholm property, Banach space, Banach algebra, evolution operator, Fredholm relation, resolvent set.
@article{MZM_2011_89_2_a5,
     author = {V. B. Didenko},
     title = {On the {Spectral} {Properties} of {Differential} {Operators} with {Unbounded} {Operator} {Coefficients} {Determined} by a {Linear} {Relation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {226--240},
     publisher = {mathdoc},
     volume = {89},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a5/}
}
TY  - JOUR
AU  - V. B. Didenko
TI  - On the Spectral Properties of Differential Operators with Unbounded Operator Coefficients Determined by a Linear Relation
JO  - Matematičeskie zametki
PY  - 2011
SP  - 226
EP  - 240
VL  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a5/
LA  - ru
ID  - MZM_2011_89_2_a5
ER  - 
%0 Journal Article
%A V. B. Didenko
%T On the Spectral Properties of Differential Operators with Unbounded Operator Coefficients Determined by a Linear Relation
%J Matematičeskie zametki
%D 2011
%P 226-240
%V 89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a5/
%G ru
%F MZM_2011_89_2_a5
V. B. Didenko. On the Spectral Properties of Differential Operators with Unbounded Operator Coefficients Determined by a Linear Relation. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 226-240. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a5/

[1] F. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR | Zbl

[2] R. Cross, Multivalued Linear Operators, Monogr. Textbooks Pure Appl. Math., 213, Marcel Dekker, New York, 1998 | MR | Zbl

[3] A. G. Baskakov, “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami, raznostnye otnosheniya i polugruppy raznostnykh otnoshenii”, Izv. RAN. Ser. matem., 73:2 (2009), 3–68 | MR | Zbl

[4] A. G. Baskakov, K. I. Chernyshov, “Spektralnyi analiz lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Matem. sb., 193:11 (2002), 3–42 | MR | Zbl

[5] V. B. Didenko, “K spektralnoi teorii uporyadochennykh par lineinykh operatorov na konechnomernykh prostranstvakh”, Vestnik Voronezhsk. gos. un-ta. Ser. fiz.-matem., 2007, no. 2, 104–107

[6] N. Danford, Dzh. Shvarts, Lineinye operatory, v. 1, Obschaya teoriya, IL, M., 1962 | MR | Zbl

[7] S. S. Kutateladze, Osnovy funktsionalnogo analiza, Sovremennaya matematika – studentam i aspirantam, Izd-vo In-ta matem., Novosibirsk, 1995 | MR | Zbl