A Characterization of Hyers--Lang Differentiability in Terms of a Tangent Cone
Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 214-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of Hyers–Lang tangent cone to a subset of a topological vector space, and give a characterization, for the case of locally convex topological vector spaces, of Hyers–Lang differentiability in terms of the Hyers–Lang tangent cone to the graph.
Keywords: Hyers–Lang differentiability, Hyers–Lang tangent cone, locally convex topological vector space, balanced neighborhood.
@article{MZM_2011_89_2_a4,
     author = {P. Voj\v{c}\'ak},
     title = {A {Characterization} of {Hyers--Lang} {Differentiability} in {Terms} of a {Tangent} {Cone}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {214--225},
     publisher = {mathdoc},
     volume = {89},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a4/}
}
TY  - JOUR
AU  - P. Vojčák
TI  - A Characterization of Hyers--Lang Differentiability in Terms of a Tangent Cone
JO  - Matematičeskie zametki
PY  - 2011
SP  - 214
EP  - 225
VL  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a4/
LA  - ru
ID  - MZM_2011_89_2_a4
ER  - 
%0 Journal Article
%A P. Vojčák
%T A Characterization of Hyers--Lang Differentiability in Terms of a Tangent Cone
%J Matematičeskie zametki
%D 2011
%P 214-225
%V 89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a4/
%G ru
%F MZM_2011_89_2_a4
P. Vojčák. A Characterization of Hyers--Lang Differentiability in Terms of a Tangent Cone. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 214-225. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a4/

[1] V. I. Averbukh, O. G. Smolyanov, “Teoriya differentsirovaniya v lineinykh topologicheskikh prostranstvakh”, UMN, 22:6 (1967), 201–260 | MR | Zbl

[2] V. I. Averbukh, O. G. Smolyanov, “Razlichnye opredeleniya proizvodnoi v lineinykh topologicheskikh prostranstvakh”, UMN, 23:4 (1968), 67–116 | MR | Zbl

[3] M. S. Bazaraa, J. J. Goode, M. Z. Nashed, “On the cones of tangents with applications to mathematical programming”, J. Optim. Theory Appl., 13:4 (1974), 389–426 | DOI | MR | Zbl

[4] F. H. Clarke, “Generalized gradients and applications”, Trans. Amer. Math. Soc., 205 (1975), 247–262 | DOI | MR | Zbl

[5] M. Fabián, “Theory of Fréchet cones”, Časopis Pěst. Mat., 107:1 (1982), 37–58 | MR | Zbl

[6] J. B. Hiriart-Urruty, “Tangent cones, generalized gradients and mathematical programming in Banach spaces”, Math. Oper. res., 4:1 (1979), 79–97 | DOI | MR | Zbl

[7] A. Jofré, J.-P. Penot, “Comparing new notions of tangent cones”, J. London Math. Soc. (2), 40:2 (1989), 280–290 | DOI | MR | Zbl

[8] J.-P. Penot, “A characterization of tangential regularity”, Nonlinear Anal., 5:6 (1981), 625–643 | DOI | MR | Zbl

[9] J. Daneš, J. Durdil, “A note on geometric characterization of Fréchet differentiability”, Comment. Math. Univ. Carolinae, 17:1 (1976), 195–204 | MR | Zbl

[10] J. Durdil, “On the geometric characterization of differentiability. II”, Comment. Math. Univ. Carolinae, 15 (1974), 727–744 | MR | Zbl

[11] M. Fabián, “On a relation between Fréchet cones and derivates”, Acta Polytech. Práce ČVUT (4), 1978, no. 1, 69–75 | MR