Asymptotics of Eigenvalues of the Jacobi Matrix of a System of Semilinear Parabolic Equations
Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 204-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the stationary spatially homogeneous solutions of a system of semilinear parabolic equations in a bounded domain with Neumann boundary conditions. It is well known that the stability of such solutions is related to the signs of the real parts of the eigenvalues of the linearized operator composed of the Jacobi matrix of the dynamical system and the differential operator generated by a diffusion process. We obtain the asymptotics of these eigenvalues. We also study the special case in which the diffusion operator is described by matrices containing Jordan blocks, which corresponds to the case of cross diffusion.
Keywords: semilinear parabolic equation, Neumann boundary condition, Laplace operator, Jordan block.
Mots-clés : Jacobi matrix, diffusion process, diffusion matrix
@article{MZM_2011_89_2_a3,
     author = {A. S. Bratus' and M. V. Safro},
     title = {Asymptotics of {Eigenvalues} of the {Jacobi} {Matrix} of a {System} of {Semilinear} {Parabolic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {204--213},
     publisher = {mathdoc},
     volume = {89},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a3/}
}
TY  - JOUR
AU  - A. S. Bratus'
AU  - M. V. Safro
TI  - Asymptotics of Eigenvalues of the Jacobi Matrix of a System of Semilinear Parabolic Equations
JO  - Matematičeskie zametki
PY  - 2011
SP  - 204
EP  - 213
VL  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a3/
LA  - ru
ID  - MZM_2011_89_2_a3
ER  - 
%0 Journal Article
%A A. S. Bratus'
%A M. V. Safro
%T Asymptotics of Eigenvalues of the Jacobi Matrix of a System of Semilinear Parabolic Equations
%J Matematičeskie zametki
%D 2011
%P 204-213
%V 89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a3/
%G ru
%F MZM_2011_89_2_a3
A. S. Bratus'; M. V. Safro. Asymptotics of Eigenvalues of the Jacobi Matrix of a System of Semilinear Parabolic Equations. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 204-213. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a3/

[1] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | Zbl

[2] J. D. Murray, Mathematical Biology, Biomathematics, 19, Springer, Berlin, 1993 | MR | Zbl

[3] Dzh. Marsden, M. Mak-Kraken, Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[4] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[5] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[6] M. I. Vishik, L. A. Lyusternik, “Reshenie nekotorykh zadach o vozmuschenii v sluchae matrits i samosopryazhennykh i nesamosopryazhennykh differentsialnykh uravnenii. I”, UMN, 15:3 (1960), 3–80 | MR | Zbl

[7] A. Yu. Kolesov, N. Kh. Rozov, “O suschestvovanii asimptoticheski bolshogo chisla ustoichivykh dissipativnykh struktur v parabolicheskikh sistemakh s maloi diffuziei”, Tr. sem. im. I. G. Petrovskogo, 20, Izd-vo Mosk. un-ta, M., 1997, 3–26 | MR | Zbl

[8] A. S. Bratus, V. P. Posvyanskii, “Statsionarnye resheniya v zamknutoi raspredelennoi sisteme evolyutsii Eigena–Shustera”, Differents. uravneniya, 42:12 (2006), 1686–1698 | MR | Zbl