Hyperbolic Operator Semigroups and Lyapunov's Equation
Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 190-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain necessary and sufficient conditions for the hyperbolicity of a semigroup of operators. In so doing, we use Lyapunov's equation in operator form constructed from its generator.
Keywords: hyperbolic semigroup of operators, Lyapunov's equation, exponential dichotomy, Howland hyperbolic semigroup, Banach algebra, Krein's theorem.
@article{MZM_2011_89_2_a2,
     author = {A. G. Baskakov and A. A. Vorobjev and M. Yu. Romanova},
     title = {Hyperbolic {Operator} {Semigroups} and {Lyapunov's} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {190--203},
     publisher = {mathdoc},
     volume = {89},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a2/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - A. A. Vorobjev
AU  - M. Yu. Romanova
TI  - Hyperbolic Operator Semigroups and Lyapunov's Equation
JO  - Matematičeskie zametki
PY  - 2011
SP  - 190
EP  - 203
VL  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a2/
LA  - ru
ID  - MZM_2011_89_2_a2
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A A. A. Vorobjev
%A M. Yu. Romanova
%T Hyperbolic Operator Semigroups and Lyapunov's Equation
%J Matematičeskie zametki
%D 2011
%P 190-203
%V 89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a2/
%G ru
%F MZM_2011_89_2_a2
A. G. Baskakov; A. A. Vorobjev; M. Yu. Romanova. Hyperbolic Operator Semigroups and Lyapunov's Equation. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 190-203. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a2/

[1] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1970 | MR | Zbl

[2] C. Chicone, Y. Latushkin, “Hyperbolicity and dissipativity”, Evolution Equations (Baton Rouge, LA, 1992), Lecture Notes in Pure and Appl. Math., 168, Marcel Dekker, New York, 1995, 95–106 | MR | Zbl

[3] C. Chicone, Yu. Latushkin, Evolution Semigroup in Dynamical Systems and Differential Equations, Math. Surveys Monogr., 70, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[4] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR | Zbl

[5] A. G. Baskakov, “Polugruppy raznostnykh operatorov v spektralnom analize lineinykh differentsialnykh operatorov”, Funkts. analiz i ego pril., 30:3 (1996), 1–11 | MR | Zbl

[6] A. G. Baskakov, Yu. N. Sintyaev, “Raznostnye operatory v issledovanii differentsialnykh operatorov: otsenki reshenii”, Differents. uravneniya, 46:2 (2010), 210–219 | MR | Zbl

[7] A. Ben-Artzi, I. Gohberg, “Dichotomy of systems and invertibility of linear ordinary differential operators”, Time-Variant Systems and Interpolation, Oper. Theory Adv. Appl., 56, Birkhäuser, Basel, 1992, 90–119 | MR | Zbl

[8] R. Bhatia, P. Rosenthal, “How and why to solve the operator equation $AX-XB=Y$”, Bull. London Math. Soc., 29:1 (1997), 1–21 | DOI | MR | Zbl

[9] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | Zbl

[10] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[11] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000 | DOI | MR | Zbl

[12] R. T. Rau, “Hyperbolic evolution semigroups on vector valued function spaces”, Semigroup Forum, 48:1 (1994), 107–118 | DOI | MR | Zbl