Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_89_2_a2, author = {A. G. Baskakov and A. A. Vorobjev and M. Yu. Romanova}, title = {Hyperbolic {Operator} {Semigroups} and {Lyapunov's} {Equation}}, journal = {Matemati\v{c}eskie zametki}, pages = {190--203}, publisher = {mathdoc}, volume = {89}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a2/} }
TY - JOUR AU - A. G. Baskakov AU - A. A. Vorobjev AU - M. Yu. Romanova TI - Hyperbolic Operator Semigroups and Lyapunov's Equation JO - Matematičeskie zametki PY - 2011 SP - 190 EP - 203 VL - 89 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a2/ LA - ru ID - MZM_2011_89_2_a2 ER -
A. G. Baskakov; A. A. Vorobjev; M. Yu. Romanova. Hyperbolic Operator Semigroups and Lyapunov's Equation. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 190-203. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a2/
[1] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1970 | MR | Zbl
[2] C. Chicone, Y. Latushkin, “Hyperbolicity and dissipativity”, Evolution Equations (Baton Rouge, LA, 1992), Lecture Notes in Pure and Appl. Math., 168, Marcel Dekker, New York, 1995, 95–106 | MR | Zbl
[3] C. Chicone, Yu. Latushkin, Evolution Semigroup in Dynamical Systems and Differential Equations, Math. Surveys Monogr., 70, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[4] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR | Zbl
[5] A. G. Baskakov, “Polugruppy raznostnykh operatorov v spektralnom analize lineinykh differentsialnykh operatorov”, Funkts. analiz i ego pril., 30:3 (1996), 1–11 | MR | Zbl
[6] A. G. Baskakov, Yu. N. Sintyaev, “Raznostnye operatory v issledovanii differentsialnykh operatorov: otsenki reshenii”, Differents. uravneniya, 46:2 (2010), 210–219 | MR | Zbl
[7] A. Ben-Artzi, I. Gohberg, “Dichotomy of systems and invertibility of linear ordinary differential operators”, Time-Variant Systems and Interpolation, Oper. Theory Adv. Appl., 56, Birkhäuser, Basel, 1992, 90–119 | MR | Zbl
[8] R. Bhatia, P. Rosenthal, “How and why to solve the operator equation $AX-XB=Y$”, Bull. London Math. Soc., 29:1 (1997), 1–21 | DOI | MR | Zbl
[9] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | Zbl
[10] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[11] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000 | DOI | MR | Zbl
[12] R. T. Rau, “Hyperbolic evolution semigroups on vector valued function spaces”, Semigroup Forum, 48:1 (1994), 107–118 | DOI | MR | Zbl