First-Order Differential Substitutions for Equations Integrable on~$\mathbb S^n$
Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 178-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

We determine necessary conditions under which integrable vector evolution equations of third order admit Miura-type transformations. For equations integrable on the $n$-dimensional sphere, we obtain first-order differential substitutions.
Keywords: vector evolution equation, differential substitution, Bäcklund transformation, pseudosymmetry, Schwartz–KdV equation.
Mots-clés : Miura-type transformation
@article{MZM_2011_89_2_a1,
     author = {M. Yu. Balakhnev},
     title = {First-Order {Differential} {Substitutions} for {Equations} {Integrable} on~$\mathbb S^n$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {178--189},
     publisher = {mathdoc},
     volume = {89},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a1/}
}
TY  - JOUR
AU  - M. Yu. Balakhnev
TI  - First-Order Differential Substitutions for Equations Integrable on~$\mathbb S^n$
JO  - Matematičeskie zametki
PY  - 2011
SP  - 178
EP  - 189
VL  - 89
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a1/
LA  - ru
ID  - MZM_2011_89_2_a1
ER  - 
%0 Journal Article
%A M. Yu. Balakhnev
%T First-Order Differential Substitutions for Equations Integrable on~$\mathbb S^n$
%J Matematičeskie zametki
%D 2011
%P 178-189
%V 89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a1/
%G ru
%F MZM_2011_89_2_a1
M. Yu. Balakhnev. First-Order Differential Substitutions for Equations Integrable on~$\mathbb S^n$. Matematičeskie zametki, Tome 89 (2011) no. 2, pp. 178-189. http://geodesic.mathdoc.fr/item/MZM_2011_89_2_a1/

[1] S. I. Svinolupov, V. V. Sokolov, “Vektorno-matrichnye obobscheniya klassicheskikh integriruemykh uravnenii”, TMF, 100:2 (1994), 214–218 | MR | Zbl

[2] I. Z. Golubchik, V. V. Sokolov, “Mnogokomponentnoe obobschenie ierarkhii uravneniya Landau–Lifshitsa”, TMF, 124:1 (2000), 62–71 | MR | Zbl

[3] V. V. Sokolov, T. Wolf, “Classification of integrable polynomial vector evolution equations”, J. Phys. A. Math. Gen., 34:49 (2001), 11139–11148 | DOI | MR | Zbl

[4] A. G. Meshkov, V. V. Sokolov, “Integrable evolution equations on the $N$-dimensional sphere”, Comm. Math. Phys., 232:1 (2002), 1–18 | DOI | MR | Zbl

[5] A. G. Meshkov, V. V. Sokolov, “Klassifikatsiya integriruemykh divergentnykh $N$-komponentnykh evolyutsionnykh sistem”, TMF, 139:2 (2004), 192–208 | MR | Zbl

[6] T. Tsuchida, T. Wolf, “Classification of polynomial integrable systems of mixed scalar and vector evolution equations. I”, J. Phys. A. Math. Gen., 38:35 (2005), 7691–7733 | DOI | MR | Zbl

[7] M. Yu. Balakhnev, “Ob odnom klasse integriruemykh evolyutsionnykh vektornykh uravnenii”, TMF, 142:1 (2005), 13–20 | MR | Zbl

[8] A. G. Meshkov, M. Ju. Balakhnev, “Integrable anisotropic evolution equations on a sphere”, SIGMA, 1 (2005), 027 | DOI | MR | Zbl

[9] M. Ju. Balakhnev, “The vector generalization of the Landau–Lifshitz equation: Bäcklund transformation and solutions”, Appl. Math. Lett., 18:12 (2005), 1363–1372 | DOI | MR | Zbl

[10] M. Ju. Balakhnev, A. G. Meshkov, “On a classification of integrable vectorial evolutionary equations”, J. Nonlinear Math. Phys., 15:2 (2008), 212–226 | DOI | MR | Zbl

[11] M. Yu. Balakhnev, “Formuly superpozitsii dlya vektornykh obobschenii uravneniya mKdF”, Matem. zametki, 82:4 (2007), 501–503 | MR | Zbl

[12] M. Yu. Balakhnev, “Formuly superpozitsii dlya integriruemykh vektornykh evolyutsionnykh uravnenii”, TMF, 154:2 (2008), 261–267 | MR | Zbl

[13] M. Ju. Balakhnev, “Superposition formulas for integrable vector evolutionary equations on a sphere”, J. Nonlinear Math. Phys., 15:1 (2008), 104–116 | DOI | MR | Zbl

[14] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “Extension of the module of invertible transformations. Classification of integrable systems”, Comm. Math. Phys., 115:1 (1988), 1–19 | DOI | MR | Zbl

[15] M. Yu. Balakhnev, I. V. Kulemin, “Differentsialnye podstanovki dlya evolyutsionnykh sistem 3-go poryadka”, Differents. uravneniya i protsessy upravleniya, 2002, no. 1, 63–69 ; http://www.neva.ru/journal | MR

[16] A. G. Meshkov, “K simmetriinoi klassifikatsii evolyutsionnykh sistem tretego poryadka divergentnogo vida”, Fundament. i prikl. matem., 12:7 (2006), 141–161 | MR | Zbl

[17] A. G. Meshkov, M. Ju. Balakhnev, “Two-field integrable evolutionary systems of the third order and their differential substitutions”, SIGMA, 4 (2008), 018 | DOI | MR | Zbl

[18] S. Ya. Startsev, “O differentsialnykh podstanovkakh tipa preobrazovaniya Miury”, TMF, 116:3 (1998), 336–348 | MR | Zbl

[19] V. V. Sokolov, “Psevdosimmetrii i differentsialnye podstanovki”, Funkts. analiz i ego pril., 22:2 (1988), 47–56 | MR | Zbl

[20] A. G. Meshkov, “Computer package for investigation of the complete integrability”, Symmetry in Nonlinear Mathematical Physics, Part 1, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 30, Inst. Mat. NAN of Ukraïni, Kyiv, 2000, 35–46 | MR | Zbl

[21] A. G. Meshkov, “Vektornye giperbolicheskie uravneniya, obladayuschie vysshimi simmetriyami”, TMF, 161:2 (2009), 176–190 | MR | Zbl