Characterization of Classes of Finite Groups with the Use of Generalized Subnormal Sylow Subgroups
Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 104-108
Cet article a éte moissonné depuis la source Math-Net.Ru
A characterization of the classes of all $\pi$-nilpotent, all $\pi$-closed, and all $\pi$-decomposable finite groups is obtained by using generalized subnormal Sylow subgroups.
Keywords:
generalized subnormal Sylow subgroup, $\pi$-nilpotent finite group, $\pi$-closed finite group
Mots-clés : $\pi$-decomposable finite group.
Mots-clés : $\pi$-decomposable finite group.
@article{MZM_2011_89_1_a9,
author = {V. N. Semenchuk and S. N. Shevchuk},
title = {Characterization of {Classes} of {Finite} {Groups} with the {Use} of {Generalized} {Subnormal} {Sylow} {Subgroups}},
journal = {Matemati\v{c}eskie zametki},
pages = {104--108},
year = {2011},
volume = {89},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a9/}
}
TY - JOUR AU - V. N. Semenchuk AU - S. N. Shevchuk TI - Characterization of Classes of Finite Groups with the Use of Generalized Subnormal Sylow Subgroups JO - Matematičeskie zametki PY - 2011 SP - 104 EP - 108 VL - 89 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a9/ LA - ru ID - MZM_2011_89_1_a9 ER -
V. N. Semenchuk; S. N. Shevchuk. Characterization of Classes of Finite Groups with the Use of Generalized Subnormal Sylow Subgroups. Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 104-108. http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a9/
[1] O. H. Kegel, “Untergruppenverbände endlicher Gruppen, die den Subnormalteilerverband echt enthalten”, Arch. Math. (Basel), 30:3 (1978), 225–228 | MR | Zbl
[2] L. A. Shemetkov, “Formatsii konechnykh grupp”, Sovremennaya algebra, Nauka, M., 1978 | MR | Zbl
[3] A. F. Vasilev, S. F. Kamornikov, V. N Semenchuk, “O reshetkakh podgrupp konechnykh grupp”, Beskonechnye gruppy i primykayuschie algebraicheskie struktury, In-t matem. AN Ukrainy, Kiev, 1993, 27–54 | MR | Zbl
[4] V. N. Semenchuk, L. A. Shemetkov, “Sverkhradikalnye formatsii”, Dokl. NAN Belarusi, 44:5 (2000), 23–25 | MR | Zbl