Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2011_89_1_a12, author = {Yu. V. Bykov}, title = {Lattices in {One-Dimensional} {Quaternionic} {Linear} {Space} that {Are} {Invariant} with {Respect} to {Finite} {Linear} {Groups}}, journal = {Matemati\v{c}eskie zametki}, pages = {122--126}, publisher = {mathdoc}, volume = {89}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a12/} }
TY - JOUR AU - Yu. V. Bykov TI - Lattices in One-Dimensional Quaternionic Linear Space that Are Invariant with Respect to Finite Linear Groups JO - Matematičeskie zametki PY - 2011 SP - 122 EP - 126 VL - 89 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a12/ LA - ru ID - MZM_2011_89_1_a12 ER -
Yu. V. Bykov. Lattices in One-Dimensional Quaternionic Linear Space that Are Invariant with Respect to Finite Linear Groups. Matematičeskie zametki, Tome 89 (2011) no. 1, pp. 122-126. http://geodesic.mathdoc.fr/item/MZM_2011_89_1_a12/
[1] A. M. Cohen, J. Algebra, 64:2 (1980), 293–324 | DOI | MR | Zbl
[2] V. L. Popov, Discrete Complex Reflection Groups, Commun. Math. Inst. Rijksuniv. Utrecht, 15, Rijksuniv. Utrecht, Utrecht, 1982 | MR | Zbl
[3] P. Du Val, Homographies, Quaternions and Rotations, Oxford Math. Monogr., Clarendon Press, Oxford, 1964 | MR | Zbl
[4] K. Aierlend, M. Rouzen, Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987 | MR | Zbl