Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_6_a8, author = {T. Yu. Kulikova}, title = {On the {Quantitative} {Sharpening} of a {Theorem} of {Birch}}, journal = {Matemati\v{c}eskie zametki}, pages = {897--901}, publisher = {mathdoc}, volume = {88}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a8/} }
T. Yu. Kulikova. On the Quantitative Sharpening of a Theorem of Birch. Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 897-901. http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a8/
[1] B. J. Birch, “Homogeneous forms of odd degree in a large number of variables”, Mathematica, 4 (1957), 102–105 | MR | Zbl
[2] R. Aron, R. Gonzalo, A. Zagorodnyuk, “Zeroes of real polynomials”, Linear and Multilinear Algebra, 48:2 (2000), 107–115 | DOI | MR | Zbl
[3] T. D. Wooley, “Linear spaces on cubic hypersurfaces, and pairs of homogeneous cubic equations”, Bull. London Math. Soc., 29:5 (1997), 556–562 | DOI | MR | Zbl
[4] T. D. Wooley, “An explicit version of Birch's theorem”, Acta Arith., 85:1 (1998), 79–96 | MR | Zbl
[5] R. M. Aron, P. Hájek, “Zero sets of polynomials in several variables”, Arch. Math. (Basel), 86:6 (2006), 561–568 | MR | Zbl
[6] T. Yu. Kulikova, “Zamechanie o nulevykh podprostranstvakh nechetnykh polinomov”, Matem. zametki, 86:4 (2009), 543–549 | MR | Zbl