On the Quantitative Sharpening of a Theorem of Birch
Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 897-901 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author's results concerning the null subspaces of arbitrary odd polynomials in several variables are generalized to the case of common null subspaces for several odd polynomials as well as to the complex case.
Keywords: homogeneous polynomials, Birch's theorem, polynomials of odd degree, ordered partition of a set.
@article{MZM_2010_88_6_a8,
     author = {T. Yu. Kulikova},
     title = {On the {Quantitative} {Sharpening} of a {Theorem} of {Birch}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {897--901},
     year = {2010},
     volume = {88},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a8/}
}
TY  - JOUR
AU  - T. Yu. Kulikova
TI  - On the Quantitative Sharpening of a Theorem of Birch
JO  - Matematičeskie zametki
PY  - 2010
SP  - 897
EP  - 901
VL  - 88
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a8/
LA  - ru
ID  - MZM_2010_88_6_a8
ER  - 
%0 Journal Article
%A T. Yu. Kulikova
%T On the Quantitative Sharpening of a Theorem of Birch
%J Matematičeskie zametki
%D 2010
%P 897-901
%V 88
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a8/
%G ru
%F MZM_2010_88_6_a8
T. Yu. Kulikova. On the Quantitative Sharpening of a Theorem of Birch. Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 897-901. http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a8/

[1] B. J. Birch, “Homogeneous forms of odd degree in a large number of variables”, Mathematica, 4 (1957), 102–105 | MR | Zbl

[2] R. Aron, R. Gonzalo, A. Zagorodnyuk, “Zeroes of real polynomials”, Linear and Multilinear Algebra, 48:2 (2000), 107–115 | DOI | MR | Zbl

[3] T. D. Wooley, “Linear spaces on cubic hypersurfaces, and pairs of homogeneous cubic equations”, Bull. London Math. Soc., 29:5 (1997), 556–562 | DOI | MR | Zbl

[4] T. D. Wooley, “An explicit version of Birch's theorem”, Acta Arith., 85:1 (1998), 79–96 | MR | Zbl

[5] R. M. Aron, P. Hájek, “Zero sets of polynomials in several variables”, Arch. Math. (Basel), 86:6 (2006), 561–568 | MR | Zbl

[6] T. Yu. Kulikova, “Zamechanie o nulevykh podprostranstvakh nechetnykh polinomov”, Matem. zametki, 86:4 (2009), 543–549 | MR | Zbl