Affine Homogeneity of Indefinite Real Hypersurfaces in the Space~$\mathbb{C}^3$
Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 867-884.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a constructive approach to the problem of describing affinely homogeneous real hypersurfaces in $3$-dimensional complex space having nondegenerate sign-indefinite Levi form. We construct the affine invariants of a nondegenerate indefinite hypersurface in terms of second-order jets of its defining function and introduce the notion of the affine canonical equation of this surface. Three main types of canonical equations are considered. For each of these types, we construct a family of Lie algebras related to affinely homogeneous surfaces of a particular type. As a result, a family (depending on two real parameters) of affinely different homogeneous submanifolds of $3$-dimensional complex space is presented (as matrix algebras).
Keywords: affinely homogeneous indefinite hypersurface, complex space $\mathbb{C}^3$, Lie algebra, strictly pseudoconvex hypersurface, Levi form, Hermitian form, canonical equation of an indefinite surface.
@article{MZM_2010_88_6_a6,
     author = {M. S. Danilov and A. V. Loboda},
     title = {Affine {Homogeneity} of {Indefinite} {Real} {Hypersurfaces} in the {Space~}$\mathbb{C}^3$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {867--884},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a6/}
}
TY  - JOUR
AU  - M. S. Danilov
AU  - A. V. Loboda
TI  - Affine Homogeneity of Indefinite Real Hypersurfaces in the Space~$\mathbb{C}^3$
JO  - Matematičeskie zametki
PY  - 2010
SP  - 867
EP  - 884
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a6/
LA  - ru
ID  - MZM_2010_88_6_a6
ER  - 
%0 Journal Article
%A M. S. Danilov
%A A. V. Loboda
%T Affine Homogeneity of Indefinite Real Hypersurfaces in the Space~$\mathbb{C}^3$
%J Matematičeskie zametki
%D 2010
%P 867-884
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a6/
%G ru
%F MZM_2010_88_6_a6
M. S. Danilov; A. V. Loboda. Affine Homogeneity of Indefinite Real Hypersurfaces in the Space~$\mathbb{C}^3$. Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 867-884. http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a6/

[1] E. Cartan, “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Mat. Pura Appl., 11:1 (1932), 17–90 | DOI | MR | Zbl

[2] B. Doubrov, B. Komrakov, M. Rabinovich, Homogeneous surfaces in the 3-dimensional affine geometry, Preprint, Oslo, 1995

[3] G. Fels, W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201:1 (2008), 1–82 | DOI | MR | Zbl

[4] A. V. Loboda, “O nekotorykh invariantakh trubchatykh giperpoverkhnostei v $\mathbb C^2$”, Matem. zametki, 59:2 (1996), 211–223 | MR | Zbl

[5] A. V. Loboda, “Lokalnoe opisanie odnorodnykh veschestvennykh giperpoverkhnostei dvumernogo kompleksnogo prostranstva v terminakh ikh normalnykh uravnenii”, Funkts. analiz i ego pril., 34:2 (2000), 33–42 | MR | Zbl

[6] A. V. Loboda, “Odnorodnye strogo psevdovypuklye giperpoverkhnosti v $\mathbb C^3$ s dvumernymi gruppami izotropii”, Matem. sb., 192:12 (2001), 3–24 | MR | Zbl

[7] A. V. Loboda, “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb C^3$ s dvumernymi gruppami izotropii”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Anatoliya Georgievicha Vitushkina, Tr. MIAN, 235, Nauka, M., 2001, 114–142 | MR | Zbl

[8] A. V. Loboda, “Ob odnom semeistve algebr Li, svyazannykh s odnorodnymi poverkhnostyami”, Kompleksnyi analiz i prilozheniya, Sbornik statei, Tr. MIAN, 253, Nauka, M., 2006, 111–126 | MR

[9] A. V. Loboda, A. S. Khodarev, “Ob odnom semeistve affinno-odnorodnykh veschestvennykh giperpoverkhnostei 3-mernogo kompleksnogo prostranstva”, Izv. vuzov. Matem., 2003, no. 10, 38–50 | MR | Zbl

[10] S. S. Chern, J. K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133:3 (1974), 219–271 | DOI | MR

[11] A. V. Loboda, “Ob opredeleniii affinno-odnorodnoi sedlovidnoi poverkhnosti prostranstva $\mathbb R^3$ po koeffitsientam ee normalnogo uravneniya”, Matem. zametki, 65:5 (1999), 793–797 | MR | Zbl

[12] M. Eastwood, V. Ezhov, “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. Dedicata, 77:1 (1999), 11–69 | DOI | MR | Zbl

[13] R. N. Guzeev, A. V. Loboda, “O normalnykh uravneniyakh affinno-odnorodnykh vypuklykh poverkhnostei prostranstva $\mathbb R^3$”, Izv. vuzov. Matem., 2001, no. 3, 25–32 | MR | Zbl

[14] O. A. Boldyreva, A. V. Loboda, “O koeffitsientnom podkhode k affinnoi odnorodnosti”, Vestn. Voronezhsk. gos. un-ta. Ser. Fiz. Matem., 2006, no. 1, 105–109

[15] G. E. Izotov, “O sovmestnom privedenii kvadratichnoi i ermitovoi form”, Izv. vuzov. Matem., 1957, no. 1, 143–159 | MR | Zbl

[16] M. S. Danilov, “Affinno-odnorodnye veschestvennye giperpoverkhnosti s indefinitnoi formoi Levi”, Mezhdunarodnaya shkola-seminar po geometrii i analizu (Abrau-Dyurso, 2008), Tezisy dokladov, RGU, Rostov-na-Donu, 25–26

[17] O. A. Boldyreva, A. V. Loboda, “Ob odnom semeistve neprodolzhaemykh matrichnykh algebr Li”, Chernozemnyi almanakh nauchnykh issledovanii, 2007, no. 1(5), 89–102

[18] A. M. Demin, A. V. Loboda, “Primer 2-parametricheskogo semeistva affinno-odnorodnykh veschestvennykh giperpoverkhnostei v $\mathbb C^3$”, Matem. zametki, 84:5 (2008), 791–794 | MR

[19] V. K. Evchenko, A. V. Loboda, “4-mernye matrichnye algebry i affinnaya odnorodnost veschestvennykh giperpoverkhnostei prostranstva $\mathbb C^3$”, Vestn. Voronezhsk. gos. un-ta. Ser. Fiz. Matem., 2009, no. 1, 108–118

[20] D. P. Zhelobenko, A. I. Shtern, Predstavleniya grupp Li, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1983 | MR | Zbl

[21] V. K. Beloshapka, “O razmernosti gruppy avtomorfizmov analiticheskoi giperpoverkhnosti”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 243–266 | MR | Zbl

[22] A. V. Loboda, “Deistvie affinnoi podgruppy v kompleksnoi kasatelnoi ploskosti k odnorodnoi poverkhnosti”, Voronezhskaya zimnyaya matematicheskaya shkola (Voronezh, 2009), Tezisy dokladov, 106–107