An Estimate for the Sum of Legendre Symbols
Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 859-866
Cet article a éte moissonné depuis la source Math-Net.Ru
For the sum $S$ of the Legendre symbols of a polynomial of odd degree $n\ge3$ modulo primes $p\ge3$, Weil's estimate $|S|\le(n-1)\sqrt p$ and Korobov's estimate $$ |S|\le (n-1)\sqrt{p-\frac{(n-3)(n-4)}{4}}\qquad \text{for}\quad p\ge\frac{n^2+9}{2} $$ are well known. In this paper, we prove a stronger estimate, namely, $$ |S|<(n-1)\sqrt{p-\frac{(n-3)(n+1)}{4}}. $$
Keywords:
polynomial of odd degree, Weil's estimate, Korobov's estimate.
Mots-clés : Legendre symbol
Mots-clés : Legendre symbol
@article{MZM_2010_88_6_a5,
author = {E. A. Grechnikov},
title = {An {Estimate} for the {Sum} of {Legendre} {Symbols}},
journal = {Matemati\v{c}eskie zametki},
pages = {859--866},
year = {2010},
volume = {88},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a5/}
}
E. A. Grechnikov. An Estimate for the Sum of Legendre Symbols. Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 859-866. http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a5/
[1] A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités Sci. Ind., 1041, Hermann et Cie., Paris, 1948 | MR | Zbl
[2] A. Weil, Variétés abéliennes et courbes algébriques, Actualités Sci. Ind., 1064, Hermann Cie., Paris, 1948 | MR | Zbl
[3] P. M. Korobov, “Otsenka summ simvolov Lezhandra”, Dokl. AN SSSR, 196:4 (1971), 764–767 | MR | Zbl
[4] D. A. Mitkin, “Utochnenie otsenki dlya summy simvolov Lezhandra ot mnogochlenov nechetnoi stepeni”, Chebyshevskii sb., 6:3 (2005), 123–126 | MR | Zbl