On Movable Singularities of Garnier Systems
Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 845-858.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study movable singularities of Garnier systems by using an approach based on the relationship between these systems and Schlesinger isomonodromic deformations of Fuchsian systems, as well as Lauricella hypergeometric equations.
Mots-clés : Garnier system
Keywords: movable singularity, Fuchsian system, Schlesinger isomonodromic deformation, Lauricella hypergeometric equation, Painlevé equation, meromorphic function, Malgrange $\Theta$-divisor.
@article{MZM_2010_88_6_a4,
     author = {R. R. Gontsov},
     title = {On {Movable} {Singularities} of {Garnier} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {845--858},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a4/}
}
TY  - JOUR
AU  - R. R. Gontsov
TI  - On Movable Singularities of Garnier Systems
JO  - Matematičeskie zametki
PY  - 2010
SP  - 845
EP  - 858
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a4/
LA  - ru
ID  - MZM_2010_88_6_a4
ER  - 
%0 Journal Article
%A R. R. Gontsov
%T On Movable Singularities of Garnier Systems
%J Matematičeskie zametki
%D 2010
%P 845-858
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a4/
%G ru
%F MZM_2010_88_6_a4
R. R. Gontsov. On Movable Singularities of Garnier Systems. Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 845-858. http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a4/

[1] H. Poincaré, “Sur les groupes des équations linéaires”, Acta Math., 4:1 (1884), 201–312 | DOI | MR | Zbl

[2] A. A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009

[3] R. Fuchs, “Sur quelques équations différentielles linéaires du second ordre”, C. R. Acad. Sci. Paris, 141 (1906), 555–558 | Zbl

[4] V. I. Gromak, N. A. Lukashevich, Analiticheskie svoistva reshenii uravnenii Penleve, Universitetskoe, Minsk, 1990 | MR | Zbl

[5] R. Garnier, “Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes”, Ann. Sci. École Norm. Sup. (3), 29 (1912), 1–126 | MR | Zbl

[6] K. Okamoto, “Isomonodromic deformation and Painlevé equations, and the Garnier system”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 33:3 (1986), 575–618 | MR | Zbl

[7] L. Schlesinger, “Über die Lösungen gewisser linearer Differentialgleichungen als Funktionen der singulären Punkte”, J. Reine Angew. Math., 129 (1906), 287–294 | Zbl

[8] B. Malgrange, “Sur les déformations isomonodromiques. I. Singularités régulières”, Mathematics and Physics, Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 401–426 | MR | Zbl

[9] A. A. Bolibruch, “On orders of movable poles of the Schlesinger equation”, J. Dynam. Control Systems, 6:1 (2000), 57–73 | DOI | MR | Zbl

[10] A. A. Bolibrukh, “Obratnye zadachi monodromii analiticheskoi teorii differentsialnykh uravnenii”, Matematicheskie sobytiya XX veka, FAZIS, M., 2004, 53–79

[11] R. R. Gontsov, I. V. Vyugin, Apparent Singularities of Fuchsian Equations, and the Painlevé VI Equation and Garnier Systems, arXiv: math.CA/0905.1436

[12] K. Iwasaki, H. Kimura, Sh. Shimomura, M. Yoshida, From Gauss to Painlevé. A Modern Theory of Special Functions, Aspects Math., E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | MR | Zbl

[13] M. Mazzocco, “The geometry of the classical solutions of the Garnier systems”, Int. Math. Res. Not., 2002, no. 12, 613–646 | MR | Zbl